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Abstract The remanufacturing of spent power batteries (SPBs) refers to a series of 
processes including inspection, disassembly, repair, reassembly, and testing for elec-
tric vehicle power batteries that have been used and reached the end of their original 
service life. This process aims to restore the batteries to the performance standards of 
new batteries, thereby extending their service life and achieving sustainable devel-
opment. Using NIO Inc. as an example, we analyzed their energy service system and 
discussed the necessity of disassembling SPBs. In China, the development of SPB 
disassembly lines has evolved from manual disassembly on industrial assembly lines 
to refined disassembly and is now upgrading towards flexible, mixed-flow, and intelli-
gent disassembly. To address this challenge, we have designed an intelligent robotic 
disassembly system based on NeuroSymbolic Artificial Intelligence. This system 
is built upon digital twin technology, forming a flexible mixed-flow disassembly 
solution capable of adapting to various demands. Through the ‘cloud-edge-client’ 
system, we have achieved real-time decision support, planning, and dynamic config-
uration and optimization of the disassembly process. This ensures the autonomy and 
efficiency of the disassembly operations. To tackle dynamic environments, complex 
scenarios, and unstructured tasks, we have developed and deployed an autonomous 
mobile manipulation robot named BEAM (Battery disassEmbly AMmr) for battery 
disassembly within the disassembly system. The introduction of BEAM has not only 
enhanced the intelligence level of the remanufacturing process but also propelled the 
entire remanufacturing industry towards higher quality and greater efficiency. 
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1 Introduction 

1.1 The Rapid Growth and Future Vision of the Electric 
Vehicle Industry 

Transportation-related carbon emissions account for approximately one-quarter of 
global energy-related carbon emissions [1]. Decarbonizing the transportation sector 
is a critical component in achieving global sustainable development goals and 
addressing climate change. The transition from internal combustion engines to elec-
tric vehicles is one of the most evident and direct pathways in the transformation 
of transportation energy. By the end of 2023, the penetration rate of new energy 
passenger vehicles in China reached 40.61%, with a national stock of 20.41 million 
new energy passenger vehicles [2]. Globally, electric vehicle sales and penetration 
rates are also steadily increasing within foreseeable bounds [3], marking the rapid 
and robust development of the electric vehicle industry. 

1.2 Power Battery Life and Decommissioning Issues 

As the core components of new energy vehicles, power batteries have a certain 
calendar life, which is the period from production until performance degrades to an 
unacceptable level. Additionally, the cycle life of the battery, which refers to the 
number of charge–discharge cycles it can endure, is another crucial indicator for 
measuring its service life [4, 5]. Currently, the average warranty period for power 
batteries in the industry is 8 years, which is significantly shorter than the normal 
lifespan of vehicles. The frequent occurrence of the “mismatch in lifespans between 
the vehicle and the battery” problem forces users to bear the high replacement costs 
due to battery degradation. This undoubtedly reduces the residual value of vehicles 
and increases maintenance costs [6]. Therefore, it is imperative to develop low-cost, 
environmentally friendly, and economically beneficial methods for handling spent 
power batteries (SPBs) [7]. 

The handling of SPBs can be categorized into cascade utilization, recycling, and 
remanufacturing. Remanufacturing involves inspecting, disassembling, repairing, 
reassembling, and testing SPBs to restore them to the performance standards of 
new batteries. Therefore, the effective disassembly of SPBs has become a critical 
foundational step in the entire remanufacturing process. 

1.3 Autonomous Disassembly of Robots for Remanufacturing 

Currently, the disassembly of SPBs primarily relies on manual operations assisted 
by mechanical tools. While this method can address diverse disassembly needs and
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complex processes [8], it still faces challenges in mitigating chemical and electrical 
safety risks. The design of vision-based intelligent systems can more efficiently 
identify disassembly targets, while the targeted design of battery disassembly task 
planners offers new avenues for the research of fully automated battery disassembly 
robots [9]. Some studies also attempted to use more effective actuators to expand the 
range of manipulable objects [10, 11]. However, when it comes to planning issues, it 
is difficult to avoid pre-programmed methods, which undoubtedly limit the robot’s 
ability to adapt to different dynamic scenarios during the disassembly process [12]. 
Therefore, an intelligent system for efficient disassembly of SPBs has yet to be 
investigated. 

1.4 NeuroSymbolic AI for Task and Motion Planning 

To better address pre-programming challenges, a promising approach is the use 
of NeuroSymbolic Artificial Intelligence (NeuroSymbolic AI), often regarded as 
the third generation of artificial intelligence [13]. It integrates high-level reasoning, 
achieved through logical systems, with lower-level perceptual abilities, achieved 
through probabilistic learning. At the high level, it performs knowledge-based 
logical reasoning, while at the lower level, it handles perception, control, and other 
tasks through probabilistic learning. These two levels work together to accomplish 
complex tasks. This technology has yielded significant results in many fields [14, 
15]. For example, the introduction of NeuroSymbolic AI can effectively solve the 
motion planning problem of mobile robots involving temporal objectives [16] or  
extract task rules in the absence of explicitly labeled supervision [17]. The success 
of this technology across various fields stems from the use of neural networks, which 
provide flexibility, robustness, and scalability, combined with symbolic systems that 
offer interpretability, trustworthiness, and data efficiency [18], making it widely 
applicable to reasoning and learning tasks across multiple domains [19]. 

1.5 Content and Contribution of This Article 

The remainder of this paper is structured as follows. Chapter 2 uses NIO Inc. (NIO) as 
a case study to discuss its energy service system and the technical challenges encoun-
tered in the remanufacturing of power batteries. Chapter 3 proposes a NeuroSym-
bolic based robotic autonomous disassembly system to address these real-world chal-
lenges. It is efficiently deployed through a Cloud-Edge-Client (CEC) system and safe-
guarded by an interactive digital twin system for high efficiency and safety. Chapter 4 
provides a broader perspective on the future of power battery remanufacturing. 

The main contributions of this paper are as follows:
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(1) Using NIO as an example, we analyze the current energy service system and 
modes of new energy vehicles, discussing the necessity of SPBs remanufac-
turing. 

(2) We design a NeuroSymbolic based robotic autonomous disassembly system, 
achieving robust autonomous disassembly of SPBs, and efficiently deployed by 
using a CEC architecture. 

(3) We developed an interactive digital twin system to enhance the efficiency and 
safety of the disassembly process. 

2 Battery Rental Exchange Modes and Power Battery 
Remanufacturing 

2.1 Battery Rental Exchange Mode 

In the traditional automotive sales model, manufacturers often focus on the produc-
tion process while paying insufficient attention to vehicle recycling and remanufac-
turing. Although some manufacturers have engaged in design for remanufacturing, 
they often struggle to achieve significant economic benefits. With the rapid develop-
ment of the electric vehicle industry, manufacturers are becoming more attentive to 
user experience, particularly regarding the lifespan of power batteries. To extend the 
lifespan of power batteries and create more competitive energy service systems, an 
increasing number of automakers are exploring new solutions. 

After the warranty period of an electric vehicle’s power batteries expires, users of 
non-battery-swapping models must bear the potentially high costs of battery mainte-
nance and replacement themselves. NIO’s solution to this issue is the battery rental 
exchange mode, which utilizes the vehicle-to-battery separation technology and 
digital twin technology based on integration to offer a Battery-as-a-Service (BaaS) 
rental service. This service provides users with more flexible energy replenishment 
options while enabling intensive management of battery assets. The “Vehicle-to-
Battery Separation” model constructed by BaaS has demonstrated unique advantages 
in the field of new energy vehicles, achieving systematic battery resource savings 
of at least 17% to 30% through optimized battery management and resource alloca-
tion. This model provides an economically efficient solution for users. Specifically, 
it manifests in two aspects: 

(1) By implementing a balanced battery swapping strategy, this model effec-
tively integrates short-range battery packs with high-range ones. This approach 
achieves “average mileage” for batteries and prevents the premature retirement 
of high-range batteries. It ensures that batteries operate optimally at all times and 
enhances the overall energy efficiency of the BaaS system through optimized 
resource allocation.
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(2) Through centralized management of battery assets, more precise monitoring 
of battery health conditions is achieved. Real-time tracking of battery perfor-
mance and status enables timely identification of potential issues, facilitating 
appropriate maintenance or replacement measures. This proactive maintenance 
strategy not only helps extend battery lifespan but also significantly reduces 
user operational costs in the long term, thereby creating conditions conducive 
to remanufacturing. 

Owing to the extensive cycle regulation enabled by NIO’s battery swapping model, 
its power batteries can maintain an 80% State of Health (SOH) even after 12 years of 
use, significantly exceeding the current industry average of 70% SOH after 8 years. 
Based on this, in March 2024, NIO further proposed a long-life battery with a target 
lifespan of 15 years, maintaining a health level of ≥85%, and ensuring mileage 
reliability. This development is of great significance for both the industry and users. 

There are various systems and models for battery management, but in compar-
ison, mature battery-swapping models offer significant advantages (see Fig. 1). The 
traditional approach of combining slow and fast charging (commonly used in non-
swappable battery vehicles) has the benefit of mature battery manufacturing tech-
nology and better battery stability. However, charging requires considerable wait 
time, and as the battery ages, users face higher costs for maintenance or replace-
ment. Additionally, some breakthrough technologies allow vehicles to undergo super-
charging. For instance, some electric vehicle Original Equipment Manufacturers 
(OEMs) rely on extensive supercharger networks for fast charging. However, super-
charging technology has a significant impact on battery lifespan and places high 
demands on national grid power (public infrastructure capacity), including safety 
and reliability concerns. 

In contrast, NIO’s battery-swapping model, with its balanced battery replacement 
strategy, greatly reduces waiting time and lowers the initial cost of vehicle ownership. 
This model not only enhances battery maintainability and lifespan but also provides 
flexibility for future battery technology upgrades, allowing users to easily benefit 
from the rapid advancements in battery technology by simply changing the service

Fig. 1 Comparative analysis among typical battery management systems 
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package. Most importantly, swapping stations can serve as energy storage facili-
ties, helping to balance the national grid by storing energy during off-peak hours. 
However, the high infrastructure costs associated with swapping stations remain a 
major challenge, making it necessary to expand the swapping network further to 
boost its competitiveness. 

2.2 Power Battery Remanufacturing 

Another significant advantage of the battery swapping system is its facilitation of 
battery maintenance and remanufacturing. Once the vehicle and battery are decou-
pled, issues related to battery retirement or end-of-life ownership will no longer 
be contentious. The standardization and regulation of batteries enable unified disas-
sembly methods. This facilitates the establishment of specialized robotic disassembly 
systems for retired batteries from battery-swapping vehicles. Consequently, it mini-
mizes disassembly and recycling costs while maximizing the recovery rate of raw 
materials. 

Based on extensive investigation and research at the NIO automotive factory, we 
identified the following issues in the current disassembly of SPBs: 

(1) The variety of batteries, with different models and sizes, poses difficulties for 
automated disassembly. Customization of production lines incurs high costs and 
results in low flexibility. 

(2) Efficient and safe disassembly of batteries at the end of their lifecycle is chal-
lenging with existing technologies, which struggle to form an industrialized 
disassembly model, necessitating the development of an efficient and feasible 
system. 

(3) The highly dynamic and complex tasks involved in robotic disassembly 
processes are prone to problems, requiring a comprehensive monitoring and 
interactive system to ensure efficient operations. 

We have proposed targeted solutions to address these issues, with specific details 
to be elaborated in the next chapter.
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3 Key Technology and System Design of Autonomous 
Disassembly Robot for Remanufacturing 

3.1 Intelligent Disassembly Technology for Robots Based 
on Neuro-Symbolic Artificial Intelligence 

In our previous work, we successfully implemented a NeuroSymbolic based robotic 
autonomous disassembly Task and Motion Planning (TAMP) system in a labora-
tory environment [20]. This system utilizes Planning Domain Definition Language 
(PDDL) [21] to define action primitives and employs neural predicates to convert 
multimodal information collected by the robot’s multiple sensors into symbolic 
state representations in real time. An efficient state-space planner then generates 
a sequence of action primitives from the current state to the target state [22]. Each 
action primitive, such as moving, aligning, and inserting, is a minimal, indivisible 
action derived from the manual disassembly process and is defined in a knowledge-
driven PDDL format. Each neural predicate is a neural network that processes multi-
sensor inputs to determine the current state, such as whether the sleeve is aligned 
with the bolt or whether the sleeve is engaged with the bolt. 

Furthermore, to address the search explosion in symbolic space primitive plan-
ning, we introduced large language models such as ChatGPT to achieve an effi-
cient heuristic for task planning by using in-context learning and self-designed 
architecture [23]. Additionally, to accommodate more motion planning scenarios, 
we equipped the robotic arm with a movable chassis, forming a comprehensive 
Autonomous Mobile Manipulator Robot (AMMR), named BEAM-1 [24]. BEAM 
supports 12 different disassembly action primitives and 20 different types of 
sleeves. The “data and knowledge” dual-driven NeuroSymbolic system enables it 
to autonomously perform bolt disassembly tasks in large-scale, diverse, and highly 
dynamic environments. 

3.2 Cloud-Edge-Client System Design 

NeuroSymbolic AI enables the BEAM system at the laboratory stage to 
autonomously observe the environment, assess states and tasks, and decide on 
sequences of action primitives to execute, thereby autonomously completing wide-
range bolt disassembly tasks. Furthermore, we are considering the efficient deploy-
ment of this entire technological approach in industrial settings to establish an 
industrialized closed-loop disassembly model, addressing the second challenge. We 
propose a CEC system (see Fig. 2).

We define the cloud computing layer as consisting of both public and private 
clouds. Public cloud services, which include large language models, will support 
task planning. Meanwhile, the private cloud, with its substantial computing power,
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Fig. 2 Overview of key technical details and general architecture of the robotic autonomous 
disassembly system. Neurosymbolic AI-based autonomous disassembly industrialization model 
deployed by CEC System, equipped with digital twin

will handle action primitives driven by prior knowledge, such as battery structures 
and disassembly relationship diagrams. It will also manage neural predicates that 
require large data-driven training. 

Resources and information from the cloud computing layer can be accessed by 
multiple edge computing layers. Here, we consider an edge computing layer to repre-
sent a factory with an independent computing center. Each factory has a flexible 
mixed-flow disassembly line [20] to accomplish various disassembly tasks. Within 
the edge computing layer, the system is responsible for formulating the task execution 
plan based on factory-specific information, takt time requirements, and digital twin 
computation results. Subsequently, this plan is communicated to the end devices,
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Intel ECI. Additionally, the digital twin system of each factory should be deployed 
in the edge computing layer to ensure real-time monitoring and simulation. 

Each Intel ECI in the edge computing layer serves as the central controller for 
either a fixed robot or an AMMR. Using BEAM as an example, the mobile chassis 
information, camera RGBD information, and actuator force/torque information are 
first perceived by neural predicates to determine the current state. Subsequently, the 
planner or large language model performs TAMP to generate the optimal sequence of 
action primitives from the current state to the target state. Validation and verification 
are conducted simultaneously. After each action primitive in the planned sequence is 
executed, we optimistically assume that the state in the symbolic space has changed 
as expected. This is then compared with the execution result perceived by the neural 
predicates. If discrepancies are found, re-planning is initiated. 

The data for continuous learning is sourced from the execution process of action 
primitives. After each execution, since the neural predicates perceive the environ-
mental state and compare it with the ideal state planned in the symbolic space, we can 
easily ascertain the outcome of each action primitive. Additionally, when a partic-
ular scenario is encountered multiple times, the neural predicates should memorize it. 
This allows for the use of more efficient and rapid action primitives for disassembly 
tasks when the same scenario arises again, akin to self-taught pre-programming. All 
this information will be uploaded to the cloud for training to optimize the accuracy 
and quality of the neural predicates and action primitives. 

It is noteworthy that this deployment model is feasible because the edge computing 
layer does not require substantial computational resources. By utilizing an Intel ECI 
CPU combined with Neural Processing Units (NPUs), efficient real-time inference 
is achieved, significantly reducing costs. Continuous learning and network training 
occur in the cloud computing layer, which not only facilitates the centralized utiliza-
tion of GPU computational resources but also allows for the extensive sharing of 
neural predicates and action primitives. 

3.3 Digital Twin for Power Battery Disassembly Line 

To address the challenges of remote control and interaction applications, we success-
fully deployed an autonomous disassembly workstation digital twin system at the 
edge computing layer (see Fig. 3). This system integrates physical and informa-
tional data, not only reflecting the real-time operational status of both the physical 
disassembly system and the virtual disassembly system but also enabling their real-
time interactive control. The system construction primarily involves three key stages: 
constructing virtual scenarios, seamless integration with the real world, and intuitive 
human–machine interaction design.

The core objective of the virtual scene component is to construct high-precision 
twin models. We proposed a refined modeling technique to perform topological 
optimization on numerous invalid faces and unreasonable mesh distributions in the
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Fig. 3 Implementation of the Digital Twin System. The digital twin is deployed in the edge 
computing layer of each factory for monitoring, controlling, and simulating real-world scenarios

original model, establish model hierarchies and motion constraints, and finally render 
the models. 

For human–machine interaction, we designed and implemented the human– 
machine interface for the digital twin system using the Unreal Engine (UE) platform 
[25, 26], achieving multi-source data integration and presentation. This includes the 
real-time display of posture, robotic arm movements, and sensor parameters, as well 
as real-time feedback for control interactions. 

Addressing the maturity challenges of current digital twin technology in remote 
control applications, we propose employing the Python Django [27] framework as the 
backend service architecture for the digital twin system. Utilizing SSH communica-
tion technology, we deploy Python Django backend programs to the factory’s on-site 
workstation servers and employ an intranet mapping strategy to map the backend 
service port addresses to a public domain name. The Unreal Engine frontend commu-
nicates remotely with the backend by sending HTTP requests to the public domain 
name. This setup, combined with MySQL cloud databases [28] for dynamic data 
storage, facilitates efficient interaction and control between clients and workstation 
servers, significantly enhancing the practicality of the digital twin system.
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4 Conclusions 

4.1 Contribution of Remanufacturing-Oriented Autonomous 
Disassembly Robots to the Remanufacturing Industry 

This paper takes NIO as an example to analyze its energy service system and 
discuss the necessity of SPBs remanufacturing. In response to the practical issues 
encountered during the disassembly process, we designed a NeuroSymbolic based 
autonomous disassembly robot for SPBs, deployed using the CEC architecture, 
and developed a corresponding digital twin system. NeuroSymbolic AI enables our 
system to autonomously perform disassembly in highly dynamic environments, with 
diverse disassembly objects and complex disassembly processes, without any pre-
programming. This not only reduces labor costs and mitigates disassembly risks but 
also contributes to the sustainable development of the remanufacturing industry. This 
technological architecture supports a circular economy and also aligns with global 
efforts to achieve sustainable development goals. 

4.2 Perspective 

To promote the vigorous development of the battery remanufacturing industry, it is 
imperative to establish a responsibility-sharing mechanism involving industry stake-
holders, government agencies, and consumers. Industry participants can focus on 
design for remanufacturing and invest in remanufacturing facilities. The government 
can encourage remanufacturing practices through policies, subsidies, and regulatory 
frameworks. Consumers can drive demand by participating in recycling programs 
and choosing remanufactured products. 

The future of battery remanufacturing is closely linked to the formulation of 
comprehensive policies and regulations. These policies should address standardized 
procedures for battery collection, transportation, and storage, as well as safety and 
environmental standards for the remanufacturing process. Additionally, reasonable 
quantitative standards should be established to diagnose whether a battery’s health 
necessitates remanufacturing. 

In the field of robotic disassembly, we will continue to dedicate efforts to 
the research of autonomous disassembly technology for power batteries by using 
NeuroSymbolic AI, striving to enhance the efficiency and cost-effectiveness of 
remanufacturing operations. This fundamentally transforms the battery remanu-
facturing and disassembly industries, making them more flexible, efficient, and 
sustainable.
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