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Abstract The remanufacturing of spent power batteries (SPBs) refers to a series of
processes including inspection, disassembly, repair, reassembly, and testing for elec-
tric vehicle power batteries that have been used and reached the end of their original
service life. This process aims to restore the batteries to the performance standards of
new batteries, thereby extending their service life and achieving sustainable devel-
opment. Using NIO Inc. as an example, we analyzed their energy service system and
discussed the necessity of disassembling SPBs. In China, the development of SPB
disassembly lines has evolved from manual disassembly on industrial assembly lines
to refined disassembly and is now upgrading towards flexible, mixed-flow, and intelli-
gent disassembly. To address this challenge, we have designed an intelligent robotic
disassembly system based on NeuroSymbolic Artificial Intelligence. This system
is built upon digital twin technology, forming a flexible mixed-flow disassembly
solution capable of adapting to various demands. Through the ‘cloud-edge-client’
system, we have achieved real-time decision support, planning, and dynamic config-
uration and optimization of the disassembly process. This ensures the autonomy and
efficiency of the disassembly operations. To tackle dynamic environments, complex
scenarios, and unstructured tasks, we have developed and deployed an autonomous
mobile manipulation robot named BEAM (Battery disassEmbly AMmr) for battery
disassembly within the disassembly system. The introduction of BEAM has not only
enhanced the intelligence level of the remanufacturing process but also propelled the
entire remanufacturing industry towards higher quality and greater efficiency.
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1 Introduction

1.1 The Rapid Growth and Future Vision of the Electric
Vehicle Industry

Transportation-related carbon emissions account for approximately one-quarter of
global energy-related carbon emissions [1]. Decarbonizing the transportation sector
is a critical component in achieving global sustainable development goals and
addressing climate change. The transition from internal combustion engines to elec-
tric vehicles is one of the most evident and direct pathways in the transformation
of transportation energy. By the end of 2023, the penetration rate of new energy
passenger vehicles in China reached 40.61%, with a national stock of 20.41 million
new energy passenger vehicles [2]. Globally, electric vehicle sales and penetration
rates are also steadily increasing within foreseeable bounds [3], marking the rapid
and robust development of the electric vehicle industry.

1.2 Power Battery Life and Decommissioning Issues

As the core components of new energy vehicles, power batteries have a certain
calendar life, which is the period from production until performance degrades to an
unacceptable level. Additionally, the cycle life of the battery, which refers to the
number of charge—discharge cycles it can endure, is another crucial indicator for
measuring its service life [4, 5]. Currently, the average warranty period for power
batteries in the industry is 8 years, which is significantly shorter than the normal
lifespan of vehicles. The frequent occurrence of the “mismatch in lifespans between
the vehicle and the battery” problem forces users to bear the high replacement costs
due to battery degradation. This undoubtedly reduces the residual value of vehicles
and increases maintenance costs [6]. Therefore, it is imperative to develop low-cost,
environmentally friendly, and economically beneficial methods for handling spent
power batteries (SPBs) [7].

The handling of SPBs can be categorized into cascade utilization, recycling, and
remanufacturing. Remanufacturing involves inspecting, disassembling, repairing,
reassembling, and testing SPBs to restore them to the performance standards of
new batteries. Therefore, the effective disassembly of SPBs has become a critical
foundational step in the entire remanufacturing process.

1.3 Autonomous Disassembly of Robots for Remanufacturing

Currently, the disassembly of SPBs primarily relies on manual operations assisted
by mechanical tools. While this method can address diverse disassembly needs and
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complex processes [8], it still faces challenges in mitigating chemical and electrical
safety risks. The design of vision-based intelligent systems can more efficiently
identify disassembly targets, while the targeted design of battery disassembly task
planners offers new avenues for the research of fully automated battery disassembly
robots [9]. Some studies also attempted to use more effective actuators to expand the
range of manipulable objects [10, 11]. However, when it comes to planning issues, it
is difficult to avoid pre-programmed methods, which undoubtedly limit the robot’s
ability to adapt to different dynamic scenarios during the disassembly process [12].
Therefore, an intelligent system for efficient disassembly of SPBs has yet to be
investigated.

1.4 NeuroSymbolic Al for Task and Motion Planning

To better address pre-programming challenges, a promising approach is the use
of NeuroSymbolic Artificial Intelligence (NeuroSymbolic Al), often regarded as
the third generation of artificial intelligence [13]. It integrates high-level reasoning,
achieved through logical systems, with lower-level perceptual abilities, achieved
through probabilistic learning. At the high level, it performs knowledge-based
logical reasoning, while at the lower level, it handles perception, control, and other
tasks through probabilistic learning. These two levels work together to accomplish
complex tasks. This technology has yielded significant results in many fields [14,
15]. For example, the introduction of NeuroSymbolic Al can effectively solve the
motion planning problem of mobile robots involving temporal objectives [16] or
extract task rules in the absence of explicitly labeled supervision [17]. The success
of this technology across various fields stems from the use of neural networks, which
provide flexibility, robustness, and scalability, combined with symbolic systems that
offer interpretability, trustworthiness, and data efficiency [18], making it widely
applicable to reasoning and learning tasks across multiple domains [19].

1.5 Content and Contribution of This Article

The remainder of this paper is structured as follows. Chapter 2 uses NIO Inc. (NIO) as
acase study to discuss its energy service system and the technical challenges encoun-
tered in the remanufacturing of power batteries. Chapter 3 proposes a NeuroSym-
bolic based robotic autonomous disassembly system to address these real-world chal-
lenges. Itis efficiently deployed through a Cloud-Edge-Client (CEC) system and safe-
guarded by an interactive digital twin system for high efficiency and safety. Chapter 4
provides a broader perspective on the future of power battery remanufacturing.
The main contributions of this paper are as follows:
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(1) Using NIO as an example, we analyze the current energy service system and
modes of new energy vehicles, discussing the necessity of SPBs remanufac-
turing.

(2) We design a NeuroSymbolic based robotic autonomous disassembly system,
achieving robust autonomous disassembly of SPBs, and efficiently deployed by
using a CEC architecture.

(3) We developed an interactive digital twin system to enhance the efficiency and
safety of the disassembly process.

2 Battery Rental Exchange Modes and Power Battery
Remanufacturing

2.1 Battery Rental Exchange Mode

In the traditional automotive sales model, manufacturers often focus on the produc-
tion process while paying insufficient attention to vehicle recycling and remanufac-
turing. Although some manufacturers have engaged in design for remanufacturing,
they often struggle to achieve significant economic benefits. With the rapid develop-
ment of the electric vehicle industry, manufacturers are becoming more attentive to
user experience, particularly regarding the lifespan of power batteries. To extend the
lifespan of power batteries and create more competitive energy service systems, an
increasing number of automakers are exploring new solutions.

After the warranty period of an electric vehicle’s power batteries expires, users of
non-battery-swapping models must bear the potentially high costs of battery mainte-
nance and replacement themselves. NIO’s solution to this issue is the battery rental
exchange mode, which utilizes the vehicle-to-battery separation technology and
digital twin technology based on integration to offer a Battery-as-a-Service (BaaS)
rental service. This service provides users with more flexible energy replenishment
options while enabling intensive management of battery assets. The “Vehicle-to-
Battery Separation” model constructed by BaaS has demonstrated unique advantages
in the field of new energy vehicles, achieving systematic battery resource savings
of at least 17% to 30% through optimized battery management and resource alloca-
tion. This model provides an economically efficient solution for users. Specifically,
it manifests in two aspects:

(1) By implementing a balanced battery swapping strategy, this model effec-
tively integrates short-range battery packs with high-range ones. This approach
achieves “average mileage” for batteries and prevents the premature retirement
of high-range batteries. It ensures that batteries operate optimally at all times and
enhances the overall energy efficiency of the BaaS system through optimized
resource allocation.
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(2) Through centralized management of battery assets, more precise monitoring
of battery health conditions is achieved. Real-time tracking of battery perfor-
mance and status enables timely identification of potential issues, facilitating
appropriate maintenance or replacement measures. This proactive maintenance
strategy not only helps extend battery lifespan but also significantly reduces
user operational costs in the long term, thereby creating conditions conducive
to remanufacturing.

Owing to the extensive cycle regulation enabled by NIO’s battery swapping model,
its power batteries can maintain an 80% State of Health (SOH) even after 12 years of
use, significantly exceeding the current industry average of 70% SOH after 8 years.
Based on this, in March 2024, NIO further proposed a long-life battery with a target
lifespan of 15 years, maintaining a health level of >85%, and ensuring mileage
reliability. This development is of great significance for both the industry and users.

There are various systems and models for battery management, but in compar-
ison, mature battery-swapping models offer significant advantages (see Fig. 1). The
traditional approach of combining slow and fast charging (commonly used in non-
swappable battery vehicles) has the benefit of mature battery manufacturing tech-
nology and better battery stability. However, charging requires considerable wait
time, and as the battery ages, users face higher costs for maintenance or replace-
ment. Additionally, some breakthrough technologies allow vehicles to undergo super-
charging. For instance, some electric vehicle Original Equipment Manufacturers
(OEMs) rely on extensive supercharger networks for fast charging. However, super-
charging technology has a significant impact on battery lifespan and places high
demands on national grid power (public infrastructure capacity), including safety
and reliability concerns.

In contrast, NIO’s battery-swapping model, with its balanced battery replacement
strategy, greatly reduces waiting time and lowers the initial cost of vehicle ownership.
This model not only enhances battery maintainability and lifespan but also provides
flexibility for future battery technology upgrades, allowing users to easily benefit
from the rapid advancements in battery technology by simply changing the service

Battery Management Approach Unique Advantages Areas for Improvement

Lower charging efficiency,
Stable battery technology, high considerable waiting time,
vehicle integration. and higher costs for
maintenance or replacement.

Slow charging + fast charging

Impact on battery lifespan
and places high demands on
national grid power.

Faster charging speed, extensive

Superchargers or DC fast charging e

Fast swapping, extended battery
lifespan, flexible cost, and
swapping stations serve as energy
storage facilities.

Battery swapping + leasing High infrastructure costs.

Fig. 1 Comparative analysis among typical battery management systems
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package. Most importantly, swapping stations can serve as energy storage facili-
ties, helping to balance the national grid by storing energy during off-peak hours.
However, the high infrastructure costs associated with swapping stations remain a
major challenge, making it necessary to expand the swapping network further to
boost its competitiveness.

2.2 Power Battery Remanufacturing

Another significant advantage of the battery swapping system is its facilitation of
battery maintenance and remanufacturing. Once the vehicle and battery are decou-
pled, issues related to battery retirement or end-of-life ownership will no longer
be contentious. The standardization and regulation of batteries enable unified disas-
sembly methods. This facilitates the establishment of specialized robotic disassembly
systems for retired batteries from battery-swapping vehicles. Consequently, it mini-
mizes disassembly and recycling costs while maximizing the recovery rate of raw
materials.

Based on extensive investigation and research at the NIO automotive factory, we
identified the following issues in the current disassembly of SPBs:

(1) The variety of batteries, with different models and sizes, poses difficulties for
automated disassembly. Customization of production lines incurs high costs and
results in low flexibility.

(2) Efficient and safe disassembly of batteries at the end of their lifecycle is chal-
lenging with existing technologies, which struggle to form an industrialized
disassembly model, necessitating the development of an efficient and feasible
system.

(3) The highly dynamic and complex tasks involved in robotic disassembly
processes are prone to problems, requiring a comprehensive monitoring and
interactive system to ensure efficient operations.

We have proposed targeted solutions to address these issues, with specific details
to be elaborated in the next chapter.
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3 Key Technology and System Design of Autonomous
Disassembly Robot for Remanufacturing

3.1 Intelligent Disassembly Technology for Robots Based
on Neuro-Symbolic Artificial Intelligence

In our previous work, we successfully implemented a NeuroSymbolic based robotic
autonomous disassembly Task and Motion Planning (TAMP) system in a labora-
tory environment [20]. This system utilizes Planning Domain Definition Language
(PDDL) [21] to define action primitives and employs neural predicates to convert
multimodal information collected by the robot’s multiple sensors into symbolic
state representations in real time. An efficient state-space planner then generates
a sequence of action primitives from the current state to the target state [22]. Each
action primitive, such as moving, aligning, and inserting, is a minimal, indivisible
action derived from the manual disassembly process and is defined in a knowledge-
driven PDDL format. Each neural predicate is a neural network that processes multi-
sensor inputs to determine the current state, such as whether the sleeve is aligned
with the bolt or whether the sleeve is engaged with the bolt.

Furthermore, to address the search explosion in symbolic space primitive plan-
ning, we introduced large language models such as ChatGPT to achieve an effi-
cient heuristic for task planning by using in-context learning and self-designed
architecture [23]. Additionally, to accommodate more motion planning scenarios,
we equipped the robotic arm with a movable chassis, forming a comprehensive
Autonomous Mobile Manipulator Robot (AMMR), named BEAM-1 [24]. BEAM
supports 12 different disassembly action primitives and 20 different types of
sleeves. The “data and knowledge” dual-driven NeuroSymbolic system enables it
to autonomously perform bolt disassembly tasks in large-scale, diverse, and highly
dynamic environments.

3.2 Cloud-Edge-Client System Design

NeuroSymbolic Al enables the BEAM system at the laboratory stage to
autonomously observe the environment, assess states and tasks, and decide on
sequences of action primitives to execute, thereby autonomously completing wide-
range bolt disassembly tasks. Furthermore, we are considering the efficient deploy-
ment of this entire technological approach in industrial settings to establish an
industrialized closed-loop disassembly model, addressing the second challenge. We
propose a CEC system (see Fig. 2).

We define the cloud computing layer as consisting of both public and private
clouds. Public cloud services, which include large language models, will support
task planning. Meanwhile, the private cloud, with its substantial computing power,
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Fig. 2 Overview of key technical details and general architecture of the robotic autonomous
disassembly system. Neurosymbolic Al-based autonomous disassembly industrialization model
deployed by CEC System, equipped with digital twin

will handle action primitives driven by prior knowledge, such as battery structures
and disassembly relationship diagrams. It will also manage neural predicates that
require large data-driven training.

Resources and information from the cloud computing layer can be accessed by
multiple edge computing layers. Here, we consider an edge computing layer to repre-
sent a factory with an independent computing center. Each factory has a flexible
mixed-flow disassembly line [20] to accomplish various disassembly tasks. Within
the edge computing layer, the system is responsible for formulating the task execution
plan based on factory-specific information, takt time requirements, and digital twin
computation results. Subsequently, this plan is communicated to the end devices,
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Intel ECI. Additionally, the digital twin system of each factory should be deployed
in the edge computing layer to ensure real-time monitoring and simulation.

Each Intel ECI in the edge computing layer serves as the central controller for
either a fixed robot or an AMMR. Using BEAM as an example, the mobile chassis
information, camera RGBD information, and actuator force/torque information are
first perceived by neural predicates to determine the current state. Subsequently, the
planner or large language model performs TAMP to generate the optimal sequence of
action primitives from the current state to the target state. Validation and verification
are conducted simultaneously. After each action primitive in the planned sequence is
executed, we optimistically assume that the state in the symbolic space has changed
as expected. This is then compared with the execution result perceived by the neural
predicates. If discrepancies are found, re-planning is initiated.

The data for continuous learning is sourced from the execution process of action
primitives. After each execution, since the neural predicates perceive the environ-
mental state and compare it with the ideal state planned in the symbolic space, we can
easily ascertain the outcome of each action primitive. Additionally, when a partic-
ular scenario is encountered multiple times, the neural predicates should memorize it.
This allows for the use of more efficient and rapid action primitives for disassembly
tasks when the same scenario arises again, akin to self-taught pre-programming. All
this information will be uploaded to the cloud for training to optimize the accuracy
and quality of the neural predicates and action primitives.

Itis noteworthy that this deployment model is feasible because the edge computing
layer does not require substantial computational resources. By utilizing an Intel ECI
CPU combined with Neural Processing Units (NPUs), efficient real-time inference
is achieved, significantly reducing costs. Continuous learning and network training
occur in the cloud computing layer, which not only facilitates the centralized utiliza-
tion of GPU computational resources but also allows for the extensive sharing of
neural predicates and action primitives.

3.3 Digital Twin for Power Battery Disassembly Line

To address the challenges of remote control and interaction applications, we success-
fully deployed an autonomous disassembly workstation digital twin system at the
edge computing layer (see Fig. 3). This system integrates physical and informa-
tional data, not only reflecting the real-time operational status of both the physical
disassembly system and the virtual disassembly system but also enabling their real-
time interactive control. The system construction primarily involves three key stages:
constructing virtual scenarios, seamless integration with the real world, and intuitive
human-machine interaction design.

The core objective of the virtual scene component is to construct high-precision
twin models. We proposed a refined modeling technique to perform topological
optimization on numerous invalid faces and unreasonable mesh distributions in the
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Fig. 3 Implementation of the Digital Twin System. The digital twin is deployed in the edge
computing layer of each factory for monitoring, controlling, and simulating real-world scenarios

original model, establish model hierarchies and motion constraints, and finally render
the models.

For human-machine interaction, we designed and implemented the human-—
machine interface for the digital twin system using the Unreal Engine (UE) platform
[25, 26], achieving multi-source data integration and presentation. This includes the
real-time display of posture, robotic arm movements, and sensor parameters, as well
as real-time feedback for control interactions.

Addressing the maturity challenges of current digital twin technology in remote
control applications, we propose employing the Python Django [27] framework as the
backend service architecture for the digital twin system. Utilizing SSH communica-
tion technology, we deploy Python Django backend programs to the factory’s on-site
workstation servers and employ an intranet mapping strategy to map the backend
service port addresses to a public domain name. The Unreal Engine frontend commu-
nicates remotely with the backend by sending HTTP requests to the public domain
name. This setup, combined with MySQL cloud databases [28] for dynamic data
storage, facilitates efficient interaction and control between clients and workstation
servers, significantly enhancing the practicality of the digital twin system.
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4 Conclusions

4.1 Contribution of Remanufacturing-Oriented Autonomous
Disassembly Robots to the Remanufacturing Industry

This paper takes NIO as an example to analyze its energy service system and
discuss the necessity of SPBs remanufacturing. In response to the practical issues
encountered during the disassembly process, we designed a NeuroSymbolic based
autonomous disassembly robot for SPBs, deployed using the CEC architecture,
and developed a corresponding digital twin system. NeuroSymbolic Al enables our
system to autonomously perform disassembly in highly dynamic environments, with
diverse disassembly objects and complex disassembly processes, without any pre-
programming. This not only reduces labor costs and mitigates disassembly risks but
also contributes to the sustainable development of the remanufacturing industry. This
technological architecture supports a circular economy and also aligns with global
efforts to achieve sustainable development goals.

4.2 Perspective

To promote the vigorous development of the battery remanufacturing industry, it is
imperative to establish a responsibility-sharing mechanism involving industry stake-
holders, government agencies, and consumers. Industry participants can focus on
design for remanufacturing and invest in remanufacturing facilities. The government
can encourage remanufacturing practices through policies, subsidies, and regulatory
frameworks. Consumers can drive demand by participating in recycling programs
and choosing remanufactured products.

The future of battery remanufacturing is closely linked to the formulation of
comprehensive policies and regulations. These policies should address standardized
procedures for battery collection, transportation, and storage, as well as safety and
environmental standards for the remanufacturing process. Additionally, reasonable
quantitative standards should be established to diagnose whether a battery’s health
necessitates remanufacturing.

In the field of robotic disassembly, we will continue to dedicate efforts to
the research of autonomous disassembly technology for power batteries by using
NeuroSymbolic Al, striving to enhance the efficiency and cost-effectiveness of
remanufacturing operations. This fundamentally transforms the battery remanu-
facturing and disassembly industries, making them more flexible, efficient, and
sustainable.
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