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Abstract

With the rapid growth of electric vehicles, the efficient and safe recycling of high-energy
battery packs, particularly the removal of structural bolts, has become a critical challenge.
This study presents a NeuroSymbolic robotic system for battery disassembly, driven by
autonomous learning capabilities. The system integrates deep perception modules, sym-
bolic reasoning, and action primitives to achieve interpretable and efficient disassembly.
To improve adaptability, we introduce an offline learning framework driven by a large
language model (LLM), which analyzes historical disassembly trajectories and generates
optimized action sequences via prompt-based reasoning. This enables the synthesis of new
action primitives tailored to familiar scenarios. The system is validated on a real-world
UR10e robotic platform across various battery configurations. Experimental results show a
17 s reduction in average disassembly time per bolt and a 154.4% improvement in overall ef-
ficiency compared with traditional approaches. These findings demonstrate that combining
neural perception, symbolic reasoning, and LLM-guided learning significantly enhances
robotic disassembly performance and offers strong potential for generalization in future
battery recycling applications.

Keywords: neurosymbolic; autonomous robotic disassembly; battery recycling; large
language model (LLM); rapid and efficient battery pack disassembly

1. Introduction

With the rapid growth in electric vehicle (EV) adoption, a substantial number of
power batteries are expected to reach the end of their service life within the next 5 to
10 years. According to the International Energy Agency (IEA), the total volume of retired
batteries is projected to exceed several million tons globally by 2030. These used batteries
contain large quantities of valuable metals and critical minerals, such as lithium, cobalt,
and nickel, as well as integrated sensors, circuits, and other electronic components [1].
Efficient recovery of these resources not only alleviates upstream material constraints
and reduces dependence on primary raw materials but also enhances the resilience and
sustainability of the EV supply chain.

As the number of decommissioned batteries increases, the recycling of lithium-ion
power batteries faces growing technical challenges. Significant variability in battery
chemistries (e.g., LFP, LCO, NCA, LMO, and NMC) and cell formats (cylindrical, prismatic,
and pouch cells), combined with complex battery pack structures, comprising modules,
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support frames, high-voltage harnesses, battery management systems (BMSs), thermal
management systems, and other electronic units, further complicates the recycling pro-
cess [2]. Disassembly serves as the first step in physical separation, breaking down battery
packs into modules or cells to enable subsequent chemical recovery. Given the structural
complexity of different battery packs, multiple specialized disassembly tools are typically
required. As a result, efficient disassembly is critical to both second-life applications and
material recovery of end-of-life EV batteries [3].

Currently, disassembly of EV power batteries is predominantly manual, to accommo-
date the unpredictable geometries of retired battery packs. However, in regions with high
labor costs, manual disassembly is economically unsustainable, while in lower-cost regions,
technicians often lack standardized training and procedures. As the volume of retired
batteries increases, manual methods face serious limitations in both efficiency and safety,
rendering them unsuitable for large-scale recycling. In response, researchers have begun
exploring semi-automated disassembly solutions, such as robotic platforms for repetitive
tasks like bolt removal and module separation, to improve throughput and reduce human
risk [4].

While human-robot collaboration offers advantages in handling the complexity and
uncertainty of battery pack disassembly, achieving fully autonomous and intelligent dis-
assembly remains a major open challenge [5]. To address this, the NeuroSymbolic Al
community has proposed a deeply integrated framework for battery disassembly [6-9].
This framework combines continuous perception through neural networks with discrete
symbolic reasoning using two core components, neural predicates and action primitives,
enabling autonomous scene understanding and decision making.

In practice, the system first captures high-resolution RGB-D images of the battery pack
surface using an Intel RealSense D455 depth camera (Intel Corporation, Cupertino, CA,
USA). A YOLOv9-based model [10] within the neural predicate module detects bolt targets,
which are then refined via a Kalman filter to achieve sub-millimeter 3D pose estimation.
Once the preconditions defined in a Planning Domain Definition Language (PDDL) domain
are met, a scheduler sequentially activates the corresponding action primitives to execute
automated bolt removal. This workflow is detailed in Section 3.

Despite the increasing autonomy achieved by current NeuroSymbolic frameworks,
a critical limitation remains: the symbolic space is static and lacks the ability to adapt
through continuous learning. Neural predicates and action primitives are typically manu-
ally defined via PDDL and remain fixed during runtime, limiting the system’s ability to
generalize to new environments or improve performance based on experience. This rigidity
significantly hinders long-term adaptability and efficiency in managing structurally diverse
and dynamically changing disassembly tasks.

To overcome this limitation, we argue that an ideal disassembly robot should exhibit
human-like learning capabilities: it should initially rely on logical planning to complete
tasks and subsequently refine its strategies and action representations through accumulated
experience, thereby improving accuracy, efficiency, and robustness over time.

In response, this paper proposes a novel NeuroSymbolic embodied-intelligence frame-
work augmented with a self-learning mechanism that enables the system to extract and
adapt from historical disassembly experiences. Built upon conventional perception, reason-
ing, and execution modules, our system introduces an LLM-driven adaptive optimization
mechanism that enables real-time adjustment and continuous evolution of both neural
predicates and action primitives. To validate our approach, we select screw disassembly in
electric vehicle battery (EVB) packs as a representative high-frequency task and conduct
extensive real-world experiments.
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The main contributions of this work are summarized as follows:

*  We propose a NeuroSymbolic framework with offline learning capabilities, integrating
neural predicates, action primitives, and LLM-based policy adaptation for unified
perception, reasoning, execution, and learning.

e  We design an LLM-driven adaptive optimization module that dynamically refines
execution strategies and decision-making logic, improving the generalization and
reusability of action primitives and neural predicates.

¢ We develop and deploy the proposed system in real-world EVB disassembly scenarios,
demonstrating significant improvements in fastener localization accuracy, disassembly
efficiency, and task success rate over conventional methods.

*  We show that the proposed framework generalizes to other structured industrial
disassembly tasks, such as fan units and power modules, establishing a theoretical
and practical foundation for embodied intelligence in complex physical environments.

*  We enable historical experience-driven learning by allowing the system to au-
tonomously extract knowledge from past disassembly trajectories and iteratively
refine disassembly actions, addressing the limitations of traditional systems that lack
adaptive memory and self-improvement capabilities.

The remainder of this paper is organized as follows: Section 2 reviews related work in
intelligent and automated EVB disassembly. Section 3 presents the system architecture and
key components of the proposed framework. Section 4 details the self-learning mechanism
for screw disassembly. Section 5 reports experimental results and system validation in
realistic EVB disassembly settings. Section 6 concludes the paper and outlines future
research directions.

2. Literature Review

To enable safe, efficient, and intelligent disassembly of electric vehicle battery (EVB)
packs, recent research has explored automated disassembly systems, autonomous robotic
manipulation, and learning-based task planning. For clarity, this review is organized into
three closely related themes:

®  Section 2.1 surveys the state of the art in EVB disassembly methods, ranging from
mechanized and human-robot collaborative systems to emerging intelligent ap-
proaches, and discusses their advantages and limitations in real-world applications.

*  Section 2.2 reviews recent efforts to apply LLMs to robotic task understanding, plan-
ning, and action generation, highlighting their growing role in semantic reasoning
and adaptive decision making.

*  Section 2.3 focuses on neural predicate and action primitive learning, covering NeuroSym-
bolic representations, imitation and reinforcement learning, and other core techniques
that support motion generalization and strategic optimization in dynamic environments.

By synthesizing progress across these three areas, this review identifies current achieve-
ments and open challenges and provides the theoretical foundation and research motivation
for the self-learning EVB disassembly framework proposed in this paper.

2.1. Progress in Electric Vehicle Battery (EVB) Disassembly Methods

In EVB recycling, disassembly is a crucial and indispensable initial step [11], partic-
ularly for mechanical recovery methods that aim to enhance safety while improving the
purity of recovered materials. Due to the diversity of EVB types and the uncertainty of their
end-of-life conditions, mechanical disassembly still heavily depends on manual labor [12].
This reliance exposes workers to potential hazards, including high voltage, toxic chemicals,
fire, and electric arcs [13].
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To address these risks, researchers have explored safer, more efficient, and flexible
automated disassembly solutions. For example, task-oriented programming via intuitive
user interfaces has been proposed as an alternative to conventional teach-in and offline
programming approaches, aiming to reduce programming complexity and enable non-
expert users to control robots more effectively [14].

Human-robot collaborative systems have also been developed [15-17], where human
operators handle highly variable connectors and flexible cable harnesses, while robots focus
on repetitive or hazardous tasks. Although these systems address several technical barriers,
safety concerns persist.

Duan et al. [18] integrated depth cameras, RANSAC plane fitting, and Kalman filters
to accurately detect screw positions and poses in robotic disassembly systems, enhanc-
ing flexibility in human-robot collaboration. Additionally, artificial intelligence (AI) and
machine learning (ML) techniques have been introduced at various stages of the disas-
sembly pipeline [19,20], including component sorting, safety monitoring, decision making,
and target detection, improving the system’s capability to manage complex tasks.

Despite these advancements, many current systems are tailored to specific battery
types, lack generalization capabilities, and depend heavily on hand-crafted rules and rigid
procedures. Consequently, they struggle to adapt to novel or uncertain structural conditions
and are unable to learn effectively from prior execution experiences.

2.2. Applications of LLMs in Robotics

In recent years, LLMs, such as the GPT series [21], Palm [22], and Llama [23], have
achieved remarkable performance in natural language understanding, semantic reasoning,
and text generation. With growing abilities in reasoning and generalization, LLMs have
become a promising component in robotics, serving as a bridge between high-level task
comprehension and low-level action execution [24,25].

One of the key advantages of LLMs lies in their ability to encode general-purpose
knowledge and perform complex semantic reasoning. Researchers have begun using
natural language as a task interface, enabling robots to understand and execute human
instructions. For example, Google’s SayCan framework [26] utilizes a language model
to translate user commands into high-level action plans, which are then filtered by a
value function to ensure feasibility, thereby linking natural language and robotic control.
Similarly, the PaLM-E architecture [27] integrates LLMs into a unified multimodal module
for perception, reasoning, and control, enabling end-to-end robotic task execution.

In industrial applications such as disassembly, assembly, and material handling, LLMs
have been adopted as auxiliary reasoning engines. These models analyze historical data
and generate task optimization suggestions. For instance, Singh et al. [28,29] introduced
structured prompting techniques that encode executable robot actions and example scripts,
allowing LLMs to generate context-aware and valid task plans. These studies demon-
strate the potential of LLMs to assist in generating complex action sequences, diagnosing
abnormal states, and replanning in dynamic environments.

Furthermore, LLMs exhibit strong capabilities in generating action primitives, abstract
task representations, and inferring user intent. Several works have investigated automatic gen-
eration of PDDL models or translation of task descriptions into executable sequences [30,31],
thereby lowering the barrier to robotic deployment and enhancing generalization
and interpretability.

Although current applications of LLMs in robotics are predominantly offline and
focused on planning or advisory functions, their inference capabilities have become increas-
ingly reliable due to advancements in structured prompting and optimization. As tech-
niques like few-shot learning and structured outputs mature, LLMs are expected to play
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a central role in autonomous task understanding, planning, and knowledge transfer [32].
Their integration with NeuroSymbolic systems is anticipated to significantly boost robotic
adaptability and generalization in complex real-world scenarios.

2.3. Autonomous Learning of Neural Predicates and Action Primitives

Neural predicates and action primitives are core components of NeuroSymbolic sys-
tems for EVB disassembly. In dynamic and uncertain environments, fixed action scripts
are insufficient to address the diversity of real-world scenarios. Therefore, it is essential to
develop systems with adaptive and generalizable learning capabilities to achieve high-level
robotic intelligence.

Traditional task planning frameworks, such as Stanford Research Institute Problem
Solver (STRIPS) [33] and PDDL, rely on manually designed predicate sets. Although these
methods offer reliability, they require extensive domain knowledge and labor-intensive
annotations, limiting their scalability. To address these issues, recent studies have pro-
posed learning-based predicate induction methods. For instance, Silver [34] introduced
a framework that learns task-relevant predicates from demonstration data, supporting
automatic predicate generation and improving planning efficiency. However, in complex
environments, these methods often require large-scale demonstrations to ensure accuracy,
posing challenges for practical deployment.

Other approaches seek to derive structured representations from unstructured inputs.
For example, Martin and Doumas [35,36] employed Long-Term Memory (LTM) and Dis-
covery of Relations by Analogy (DORA) architectures to abstract functional predicates from
raw demonstrations. While effective in controlled environments, their generalization to
real-world tasks remains limited. More recently, Han et al. [37] proposed an LLM-driven
interactive framework where predicates are expressed as Python functions and iteratively
refined through feedback, enabling adaptability to open-ended and evolving task contexts.

In parallel, action learning has garnered increasing interest. Imitation learning allows
robots to learn trajectories or policies by observing expert demonstrations [38,39]. OpenAl’s
one-shot imitation framework [40] enables generalization from a single demonstration
using behavior encoders and policy decoders. Reinforcement learning, on the other hand,
allows agents to discover optimal policies through trial and error and is well-suited for
complex, long-horizon behaviors. For instance, the Skill Discovery Framework from
UC Berkeley [41] extracts high-value action primitives through unsupervised interaction,
while Google’s Learning from Play project [42] mines latent behavioral structures from
unstructured human play data.

As predicate and action learning methods mature, increasing emphasis is placed on
self-reflection, automatic parameter tuning, and minimizing manual intervention. A key
challenge remains in how to flexibly compose and synthesize new action primitives to
improve task efficiency and enable practical deployment of intelligent robots in indus-
trial environments.

3. Overview of the Proposed System

As illustrated in Figure 1, the proposed NeuroSymbolic disassembly system for elec-
tric vehicle battery (EVB) packs integrates perception, decision making, and execution
into a unified architecture. This section presents a brief overview of the system from
two perspectives: (i) hardware composition and (ii) the core functional modules for percep-
tion, planning, and control.
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Figure 1. System architecture of the proposed NeuroSymbolic disassembly platform for electric
vehicle battery packs. (a) Hardware components, including the MiR250 autonomous mobile robot,
the UR10e collaborative manipulator, and the custom-designed bolt disassembly end-effector. (b) Full
physical setup of the integrated platform. (c) Functional modules of the system, illustrating the
perception, planning, and execution pipelines enabling autonomous operation.

3.1. System Hardware Architecture

The hardware of the embodied intelligent disassembly system consists of three primary
components: an autonomous mobile robot, a six-degree-of-freedom robotic manipulator,
and a modular sleeve-type end-effector.



Batteries 2025, 11, 332

7 of 22

3.1.1. Autonomous Mobile Robot

We employ the MiR250 autonomous mobile robot (Mobile Industrial Robots A/S,
Odense, Denmark), which features a compact design, high payload capacity, robust navi-
gation capabilities, and seamless integration with collaborative manipulators. The AMR
provides global mobility and positioning for the disassembly platform, allowing the robot to
access various fastening locations and overcoming the reachability limitations of fixed-base
robotic arms.

3.1.2. Six-Degree-of-Freedom Manipulator

The Universal Robots UR10e collaborative manipulator (Universal Robots A/S,
Odense, Denmark) is selected for its ease of programming, rapid deployment, and built-in
safety features, making it well-suited for human-robot collaboration. Widely adopted in
material handling and manufacturing, the UR10e supports a standardized flange interface
that enables quick interchangeability of end-effectors.

3.1.3. Modular Sleeve-Type End-Effector

The end-effector integrates both perception and execution modules:

*  Perception Module:

- Vision Sensing: An Intel RealSense RGB-D camera captures high-resolution depth
and color data for visual analysis.

- Force/Torque Sensing: An ATI six-axis force/torque sensor(ATI Industrial Au-
tomation, Inc., Apex, NC, USA) continuously monitors disassembly forces and
moments, enabling safe and precise interaction with components.

e  Execution Module:

- Modular Sleeve Adapter: A flexible connector for switching screwdriver sockets to
accommodate various bolt specifications.

- Drive Motor: It delivers sufficient torque for reliable bolt loosening and removal.

- Electromagnet: It enables magnetic capture and retention of removed bolts through
electrically actuated absorption.

—  Flexible Joint: It compensates for surface irregularities commonly found on aged
battery packs, ensuring stable and consistent contact with fasteners.

3.1.4. Experimental Platform

All experiments presented in this paper are conducted on the described hardware
platform, where the complete NeuroSymbolic self-learning disassembly framework is
deployed and evaluated.

3.2. System Fundamentals

The proposed NeuroSymbolic robotic disassembly framework incorporates neural
predicates and action primitives to achieve autonomous, interpretable, and adaptive behav-
ior in complex EVB disassembly tasks.

Neural predicates are neural networks that map continuous sensor inputs into discrete
symbolic states. They serve as a critical bridge between low-level perception, such as RGB-
D data and force/torque signals, and high-level symbolic reasoning. By processing data
from multimodal sensors, neural predicates extract semantically meaningful features and
represent them within a symbolic state space. Unlike static, manually defined abstractions,
neural predicates enable dynamic adaptation to unstructured environments, significantly
enhancing system robustness and decision-making autonomy.
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Action primitives decompose the disassembly task into atomic, non-divisible oper-
ations based on domain knowledge and expert demonstrations. Inspired by industrial
disassembly procedures, we define a set of essential action primitives, listed in Table 1,
to cover operations such as alignment, insertion, and unscrewing. Each primitive is for-
mally specified using the PDDL, which defines its symbolic preconditions and expected
outcomes. Execution of these primitives is triggered by symbolic states inferred from neural
predicates, enabling precise and context-aware task planning.

Table 1. Core action primitives for EV battery bolt disassembly.

Action Primitive Function

The robotic end-effector moves toward the nearest detected bolt

Approach within the visual field.
The bolt position is refined, and the end-effector is aligned accurately
Mate )
along the bolt axis.
Insert The socket tool is lowered to securely engage the bolt head.
. The end-effector applies a counterclockwise torque to loosen and
Disassemble

remove the target bolt.

Within this knowledge-driven framework, neural predicates and action primitives
operate in a tightly coupled loop: predicates interpret raw sensor data into symbolic
states, which then guide the symbolic planner to sequence and trigger suitable action
primitives that meet the PDDL-defined criteria. This NeuroSymbolic integration enables the
system to achieve autonomous perception, planning, fine-grained execution, and continual
adaptation, laying the groundwork for scalable, explainable robotic disassembly in real-
world industrial applications.

4. Method

While previous NeuroSymbolic frameworks for autonomous electric vehicle (EV)
battery disassembly have demonstrated accurate and reliable screw removal capabilities,
they still lack efficient and self-improving learning mechanisms. In particular, these systems
are unable to adaptively refine disassembly strategies across repeated tasks, resulting in
redundant or suboptimal actions and ultimately limiting their scalability toward industrial-
grade embodied intelligence.

To address the above issues, we propose an enhanced framework, as illustrated in
Figure 2, which integrates LLMs and autonomous pattern learning algorithms into the
existing NeuroSymbolic architecture. The upgraded system optimizes task strategies based
on historical disassembly experience, autonomously learns new action primitives, and it-
eratively refines neural predicates to achieve more efficient task execution. The overall
framework consists of two complementary modules: an offline LLM inference module
that analyzes updated historical databases to determine potential optimizations and an
embedded deployment module for action primitive optimization and neural predicate train-
ing, which integrates learned knowledge directly into the robot’s disassembly operations.
This architecture significantly enhances the autonomous battery disassembly system’s
capabilities in terms of task understanding, strategy generation, and execution efficiency.
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Figure 2. Overview of the autonomous learning framework for efficient bolt disassembly. (a) In-
formation acquisition and LLM-based planning module, encompassing real-time data collection
during disassembly and data-driven analysis using LLMs. (b) Neural predicate and action primitive
execution module, illustrating the training of new neural predicates, the learning and synthesis of
efficient action primitives, and the integration of feedback-based verification during execution.

4.1. Bolt Disassembly Data Collection and Storage

To support experience-driven pattern discovery and policy optimization, we design a
structured pipeline to collect key spatial information during the bolt disassembly process
of EV battery packs. Compared with conventional time-series trajectory data, this pipeline
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emphasizes the spatial distribution of disassembly primitives and their relationship to bolt
positions in a consistent reference frame.

4.1.1. Data Definitions and Mathematical Representation

*  Battery Identifier: Let B denote the set of battery models, with each individual
instance being represented as b € B.
*  Bolt Position Set: For a given battery b, the set of all bolt positions is defined as

Pb:{pk€R3|k21,...,1’lb},

where ny, is the number of bolts and each py = (X, Yk, zx) represents the 3D position
of bolt k in a fixed global coordinate frame.

*  Action Primitive Set: For each bolt disassembly action, the corresponding action
primitives are recorded as

Ay = {(a Pl P [ k=10 m),

where

— gy denotes the action primitive label (e.g., move, insert, mate);
- pi€ IR? is the start position of the end-effector before executing ay;
- p§ € R3is the end position after execution.

4.1.2. Storage Format and System Implementation

Each disassembly session is represented as

€p = (b/ Pb/ Ab/ tstart)/

where tgart denotes the start time of the session. As this design focuses on spatial reasoning,
joint-space trajectories are intentionally excluded.

The data are stored using a hierarchical HDF5 or JSON-based format, exemplified
as follows:

/session_<ID>/
metadata/
battery_id: ¢‘BATT-001°
bolt_count: 8
bolt_positions: [[x1,y1,z1], ..., [x8,y8,z8]]
actions/
[
{¢‘primitive’’: ‘‘move’’,
‘‘start_position’’: [x, y, z],

‘‘end_position’’: [x, y, z]},

]

The above-described data collection module provides a structured and automated
mechanism for capturing critical information during each bolt disassembly session, in-
cluding the battery model, bolt positions, and the start and end poses of the end-effector
for each action. By maintaining a consistent spatial reference frame and standardized
schema, the system supports reliable accumulation of experiential data across diverse
disassembly scenarios.
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Although the current focus is on data acquisition, the collected information lays a
robust foundation for a range of future developments. These include but are not limited
to statistical analysis of bolt layouts, rule-based or learned action sequence optimization,
and integration with machine learning or reinforcement learning frameworks for adaptive
policy generation.

4.2. LLM-Driven Contextual Reasoning and Strategqy Optimization

While the previously introduced NeuroSymbolic disassembly framework enables
autonomous bolt removal for electric vehicle (EV) battery packs, it lacks the capability to
abstract and reuse past experiences. As a result, the system must reinitiate disassembly
planning from scratch for each task, leading to inefficiencies. To address this limitation,
we introduce an LLM as a contextual reasoning engine. The LLM analyzes the current
disassembly scenario and consults a historical experience database to suggest optimized
action sequences or propose new neural predicates and action primitives. This subsection
outlines the design and integration of the LLM into our disassembly framework. The overall
architecture is illustrated in Figure 3, which shows how the LLM leverages prompt design
to drive task optimization.

As a dedicated reasoning module, the LLM interprets the current situation based
on multiple contextual inputs, including the battery pack model, spatial distribution of
fasteners, and task-specific execution history (with a current focus on outer shell bolt
removal and future extensibility to module-level operations). Because the LLM does not
receive explicit task annotations, prompt engineering plays a critical role in improving
its semantic understanding and planning quality [43—45]. To this end, we design five
structured prompts to guide the LLM in reasoning about disassembly optimization:

1.  Role Definition: “You are a NeuroSymbolic battery disassembly robot equipped with
autonomous decision-making capabilities. Your primary task is to remove bolts from
battery packs. You are familiar with the standard disassembly process.”

2.  Historical Case Examples:

Example 1

battery_id: A

bolt_positions: [[...]]

task_planner: [[approach, mate, recognition, insert, disassemble], ...]

3. Analogy Reminder: Humans often refine their actions through repetition. For ex-
ample, after repeatedly entering the same room to switch on a light, they gradually
discover more efficient and safer routes. The time required for this task decreases
with each repetition due to accumulated experience and behavior optimization.

4.  Task-Specific Prompt: “Based on your current disassembly task, analyze whether
there is a regularity in the end-effector’s motion trajectories. Can these patterns be
exploited to generate optimized trajectories? Can new action primitives be synthesized
to execute the task more efficiently based on learned patterns?”

5. Output Format Constraint: “Please respond using the following JSON format:

{
motion_pattern: true,
optimization_possible: true,

suggestions: ‘‘<Textual optimization suggestions>’’,
reasoning: ‘‘<Explanation of why the optimization is beneficial>”’
}

To balance reasoning accuracy and real-time performance, we employ the DeepSeek-R1
model as the primary LLM. Additionally, distilled and quantized 7B and 8B variants are
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deployed for on-device inference acceleration. To further assess model generalizability, we
also perform tests with ChatGPT-40 and GPT-40-mini as comparative baselines.

By combining retrieval-augmented prompts, structured output constraints, and scal-
able deployment strategies, this LLM module enables the disassembly system to generalize
across different battery configurations, reuse prior experience, and dynamically adapt its
planning behavior in real time. Consequently, it forms a robust foundation for intelligent,
efficient, and scalable robotic disassembly of EV battery packs.

You are a NeuroSymbolic battery disassembly robot equipped with
autonomous decision-making capabilities. Your primary task is to remove bolts
from battery packs. You are familiar with the standard disassembly process.

battery_id:A;bolt_positions:[[x1,6y1,62z1], ... ];Task planner:[[approach, ... ].

W

Humans often refine their actions through repetition. For
example, after repeatedly entering the same room to switch on a light, they
gradually discover more efficient and safer routes. The time required for
this task decreases with each repetition due to accumulated experience and
behavior optimization.

Based on your current disassembly task, analyze whether
there is a regularity in the end-effector’s motion trajectories. Can these
patterns be exploited to generate optimized trajectories? Can new action
primitives be synthesized to execute the task more efficiently based on
learned patterns?

Please respond using the following JSON format;
{motion_pattern: true
optimization_possible: true;
suggestions: “<TextWal optimization suggestions>”
reasoning: “<Explamation of why the optimization is beneficial>”"}}.

LLM [GPT-—LI_ Deepseek] Disassembly of the continuous bolt alignment without occlusion

g T~ ‘Generated

motion_pattern: true;

optlmlzatloleossa.bLe true; — - —
rsuggestlons “<The aiming g and initial movement steps can be optlmlzed by leveraglng |
lp_relicix‘sh/ ac_c_ulred p051t10n data‘_ e - J
reasoning: “<By utlllzlnq prior experlence T can skip the prec1se Tocalization and 1nage*
capturing steps, which are no longer necessary for bolts that have already been
disassembled,..>’

Figure 3. LLM-driven reasoning architecture for task optimization in scenario of continuous bolt
alignment without occlusion. The diagram illustrates our prompt design and an example output
from the LLM, showcasing how prompt-based inference is used to streamline motion planning and
reduce redundant actions.

4.3. Bolt Position Prediction Based on Geometric Priors

Building on the optimization suggestions generated by the LLM, our system requires
the capability to autonomously and efficiently identify spatial regularities in the disassem-
bly environment. This enables the synthesis of novel and efficient action primitives that are
well-aligned with the detected geometric patterns. However, given that LLMs are based on
neural architectures and may occasionally generate hallucinated outputs, we incorporate a
bolt distribution consistency detection module to enhance robustness and ensure accurate
pattern recognition.
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Let the detected bolt positions be represented as P = {p1,p2, ..., pn}, where each
p; € R? denotes the 3D coordinate of the i-th bolt. To evaluate spatial consistency, we
compute the Euclidean distance between each pair of adjacent bolts:

di = lpis1 —pill, i=12,...,n-1 (1)

This produces a set of spacing distances D = {dy,dy, ..., d,_1}. Two statistical mea-
sures are employed to quantify the spatial regularity:

e  Standard deviation oy, which reflects global variance:

d= d, o= (d; — d) 2)
n-15" n—145"

*  Maximum spacing deviation A;, which captures the range of bolt spacing:
Ay = max(D) — min(D) 3)

To determine whether a given bolt configuration exhibits approximate regularity, we
define a threshold €. If 0; < € or A; < ¢, the bolt pattern is classified as approximately
equidistant, implying a regular structural layout.

This consistency assessment serves as a key prior for downstream tasks such as
geometric fitting and bolt position prediction, supporting the reuse of optimized action
primitives in structured disassembly settings.

In many disassembly tasks, bolts are arranged in geometrically consistent patterns,
particularly along battery enclosures or motor housings, where they exhibit uniform spacing
along linear or curved paths. To exploit this prior knowledge, we introduce a baseline
prediction approach that leverages average spacing and directional alignment.

Let the known bolt positions be defined as P = {p1,pz, ..., pn}, with each p; € R3
representing the 3D coordinates of bolt i. The Euclidean distance between consecutive
bolts is

di = ||pit1 —pill, fori=12,...,n—1 (4)

The average spacing d is computed as
1 n—1

—— Y d 6)

i=1

d_:

To estimate the dominant alignment direction, we perform Principal Component
Analysis (PCA) on the set P and extract the principal direction vector ¥. Based on this,
we define a geometric prediction function f (k) that estimates the position of the k-th bolt,
assuming that the first bolt p; is known:

fky=p1+(k—=1)-d-9, fork=1,2,...,m ©6)

This approach provides accurate bolt position predictions in scenarios with evenly
spaced bolts and a consistent alignment direction. It enables the system to infer the positions
of unobserved bolts using only a few initial detections, thereby reducing the perception
and computation burden. As a lightweight geometric baseline, this method serves as a
reference framework for more sophisticated generalization models.

To further enhance robustness, we integrate a force feedback verification mecha-
nism [8] to validate predicted bolt positions. After estimating position p; by using f(k),
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the robot executes a standard insertion primitive Aj. Following the action, a force/torque
sensor (an ATI six-axis sensor) collects wrench data Fi(t) from the end-effector. A pre-
calibrated threshold set Fgyccess determines insertion success:

Ck = H(Fk(t) S ]:success) (7)

Here, C; = 1indicates successful insertion, while C; = 0 triggers a fallback mechanism.
In case of failure, the fast disassembly routine is interrupted, and the system reverts
to conventional perception and planning to re-estimate the bolt position p®", thereby
ensuring safety and precision.

This closed-loop mechanism enhances the robustness of predictive manipulation
in complex environments. It allows real-time correction in response to environmental
variation or model uncertainty, effectively preventing operational errors and collisions.

In summary, the bolt position prediction and execution module operates through a
three-stage closed-loop process:

*  Spacing Consistency Detection: Adjacent bolt positions are used to compute spacing
distances, and statistical measures such as standard deviation and spacing range are
applied to assess layout regularity.

¢ Bolt Position Prediction: Given a regular pattern, average spacing and principal
direction are used to build a predictive function f(k), allowing for the extrapolation of
bolt positions from a known reference point.

*  Force Feedback Verification and Correction: After performing the primitive insertion
action, real-time force data are analyzed. In the event of a failed insertion, the system
halts execution and switches to conventional planning for correction.

This closed-loop pipeline integrates perception, prediction, and verification, enhancing
operational efficiency while ensuring high robustness and fault tolerance. It is particularly
well-suited for automated bolt disassembly tasks involving repetitive structural patterns.

4.4. Training of the Similar Scene Recognition Predicate

As discussed in previous sections, our system leverages LLM-based reasoning and
historical data to learn predictive models for bolt positions in familiar scenarios, as well as
novel action primitives for rapid disassembly. During task execution, however, it becomes
critical to assess whether the current environment resembles a previously encountered
scene, in order to trigger these learned primitives. To address this, we introduce a neural
predicate, Have_similarity_scene, designed to evaluate scene similarity and determine
whether an accelerated disassembly strategy should be activated.

The predicate is implemented using MobileNetV3 [46,47], a lightweight yet high-
performance convolutional neural network tailored for embedded and real-time appli-
cations. Compared with other backbone networks such as AlexNet, InceptionV3 [48],
and ShuffleNetV2 [49], MobileNetV3 offers a superior balance between accuracy and
computational efficiency. It integrates depthwise separable convolutions with neural ar-
chitecture search (NAS) techniques to jointly optimize model performance and latency,
making it especially suitable for robotic perception tasks under constrained resources.

To train the MobileNetV3 model, we collected high-resolution RGB-D data from four
representative EV battery disassembly scenarios using an Intel RealSense depth camera.
Each scenario contains 200 RGB images paired with 200 corresponding depth maps, captur-
ing both visual and geometric features. To enhance model generalization under real-world
variability, we applied extensive data augmentation. Specifically, each image underwent
five occlusion transformations and eight rotational augmentations, expanding the dataset
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by a factor of 80. This yielded a final dataset of 64,000 images (RGB + depth), offering high
visual diversity for robust feature learning.
The dataset covers the following four scene categories, as shown in Figure 4:

¢  Continuous bolt alignment without occlusion;
¢  Continuous bolt alignment with partial occlusion;
* Intermittent bolt alignment without occlusion;

¢  Intermittent bolt alignment with partial occlusion.

@) (b)

(0) (d)

Figure 4. Four scenarios of bolt distribution in automotive power battery packs: (a) Continuous bolt
distribution without obstacles. (b) Discontinuous bolt distribution without obstacles. (¢) Continuous
bolt distribution with obstacles. (d) Discontinuous bolt distribution with obstacles. In each scenario,
the bolt distribution is highlighted using yellow dashed squares.

All samples were standardized and manually annotated to ensure high-quality super-
vision. During inference, MobileNetV3 performs real-time feature extraction from depth
images and evaluates whether the current scene matches any previously encountered
ones based on learned embeddings. If a match is detected, the Have_similarity_scene
predicate is set to True, thereby triggering the pre-optimized task plan and activating the
bolt position prediction module. This mechanism bypasses redundant perception processes
and improves execution efficiency.

As shown in Algorithm 1, the neural predicate provides a reliable mechanism for
scene classification. When a similar scene is identified, the system initiates a fast-track disas-
sembly procedure using previously learned strategies, significantly improving adaptability
and operational efficiency in repetitive disassembly tasks. This design greatly enhances the
intelligence and practicality of the robotic system.
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Algorithm 1 Scene classification and action execution via neural predicate.

function classify_scene_and_act(image_path)
# Step 1: Load the pre-trained MobileNetV3 classifier
model <+ load_scene_classifier(MobileNetV3)

scene_label <— model.classify (image_path)

1:
2
3
4:
5. #Step 2: Classify the input image to obtain scene label
6
7
8:  # Step 3: Activate the corresponding predicate

9:  Activate_predicate(scene_label)

10:
11:  # Step 4: Retrieve and apply corresponding action mapping
12:  scene_mapping < get_scene_mapping(scene_label)

13:  apply_mapping(scene_mapping)

14:

15:  #Step 5: Execute fast disassembly action

16:  quick_disassemble()

17:  return True

18: end function

19:

20: result <— classify_scene_and_act(image)

21: print(‘‘Scene label and action triggered:’’, result)

5. Experiments

We evaluate the proposed self-learning framework on the task of bolt disassembly
from electric vehicle battery (EVB) packs. To assess the effectiveness of LLM-based strategy
optimization, as well as the performance of the newly learned neural predicates and
action primitives in facilitating efficient and continuous disassembly, we design a series of
controlled comparative experiments. The experiments are structured in two phases:

* Baseline Method: A conventional NeuroSymbolic system without optimization,
which performs continuous bolt disassembly by using static, predefined strategies.

*  Optimized Method: The proposed self-learning-enhanced NeuroSymbolic system,
which integrates LLM-driven strategy adaptation and autonomously learned primi-
tives to perform the same disassembly tasks.

To demonstrate the generalizability and robustness of the proposed approach, we
conduct real-world experiments on an actual EVB in a laboratory environment. Four
distinct scene conditions are designed to simulate typical structural and occlusion scenarios
encountered during battery disassembly. These scenarios represent

1.  Uniform bolt distribution without occlusion;

2. Uniform bolt distribution with partial occlusion;
3. Irregular bolt alignment without occlusion;

4. Irregular bolt alignment with partial occlusion.

For each scene, both methods are evaluated based on two key metrics: total disassem-
bly time and operational efficiency. By comparing performance across all conditions, we
demonstrate that the optimized method consistently outperforms the baseline.

The experimental results show that the enhanced NeuroSymbolic system, empowered
by LLM-based contextual reasoning and continuous learning, can adapt its disassembly
strategy dynamically based on prior experience. This leads to significant improvements in
task efficiency and highlights the system’s potential for achieving higher levels of autonomy
and adaptability in real-world industrial disassembly tasks.
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5.1. LLM-Based Optimization Mechanism Evaluation

This study investigates the adaptability of LLMs to bolt disassembly tasks, focusing
on their ability to generate effective optimization recommendations. We evaluate rep-
resentative LLMs—namely, GPT-40-mini, GPT-40, and DeepSeek-R1 models (7B and 8B
parameters)—integrated into our experimental framework via API interfaces. These models
have demonstrated strong language comprehension and reasoning capabilities, making
them well-suited for complex task planning in robotic systems.

5.1.1. Experimental Setup

To ensure a rigorous and comprehensive evaluation, we adopt a controlled experimen-
tal design that categorizes test scenarios based on the spatial arrangement of bolts and the
presence of physical obstructions:

e  Continuous bolt distribution without obstacles;

¢ Discontinuous bolt distribution without obstacles;
e  Continuous bolt distribution with obstacles;

¢  Discontinuous bolt distribution with obstacles.

To maintain consistency across all experiments, we standardize the prompt structure,
including the playground and example sections. Only the task-specific question component
is modified to reflect variations in scene complexity. Each model is tested over 50 indepen-
dent trials per scenario. Accuracy and performance are assessed using statistical methods

to quantify the feasibility of employing LLMs as optimization engines in autonomous
disassembly workflows.

5.1.2. Results

The performance evaluation in this experiment was conducted along three key di-
mensions: task comprehension ability, the quality of optimization suggestions, and the
practical feasibility of those suggestions. Scores were assigned based on the responses
generated by various LLMs. As illustrated in Figure 5, the results demonstrate that cur-
rent mainstream LLMSs exhibit significant application potential in the context of robotic
disassembly optimization.

GFT-40 GPT-40 mini I Deepseek-R1 7B Deepseek-R1 8B

Success Rate Of Model Optimization

100% 4

80%

60%

40%

Success Rate (%)

20%

okl ucted Obsﬂ\-“—ted bsw-"ded Dbsuuﬂed

Figure 5. Experimental results of LLM-based optimization across four disassembly scenarios.
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In the simplest case of continuous bolt distribution without occlusion, all evaluated models
achieved a 100% success rate in generating valid optimization strategies. This indicates
that LLMs are capable of leveraging scene understanding and historical experience to
infer whether a disassembly task can be simplified and can generate efficient action plans
without relying on pre-defined PDDL task descriptions.

For more challenging scenarios, such as discontinuous bolt layouts or occluded bolts,
all tested models still maintained over 94% accuracy. This further confirms the gener-
alization capabilities of LLMs in complex and dynamic environments. When equipped
with well-designed prompts, LLMs can reliably support task-specific optimization across
diverse settings.

Notably, smaller-scale models with 7B and 8B parameters performed competitively in
terms of consistency and interpretability of the suggestions. This suggests that effective
deployment in industrial applications does not necessarily require large-scale models, thus
significantly reducing computational costs and deployment barriers.

In summary, the experimental results provide strong empirical evidence for integrating
LLMs into industrial automation workflows. The findings also highlight future directions:
prompt engineering remains a critical factor for performance, and expanding the scope to-
ward multimodal visual-language models (VLMs) [50] holds promise for further enhancing
adaptability in more complex and dynamic EV battery disassembly environments.

5.2. Bolt Disassembly Experiments

To evaluate the feasibility and accuracy of the newly generated neural predicates
and action primitives derived from LLM-based optimization suggestions, we conducted
a set of robot-assisted bolt disassembly experiments. The test scenarios involved M8
hex-head bolts arranged in continuous and unoccluded configurations, with variations
including two, three, and four consecutively aligned bolts. These were compared against a
traditional method involving sequential removal of bolts one by one. Task performance
was quantified based on bolt disassembly success rate and total execution time, aiming to
validate the effectiveness and practicality of LLM-generated optimization strategies in real
robotic operations. Through the design of the above bolt alignment scenarios, we further
assessed the generalization and adaptability of the method under different simulated EV
battery configurations.

5.2.1. Experimental Setup

The experimental platform utilized a UR10e robotic arm equipped with a vision sensor,
a force/torque sensor, interchangeable socket tools, and a high-speed DC motor at the
end-effector (see Figure 1a). This setup enabled automated removal of structural bolts
from EV battery packs. Ambient lighting was carefully controlled to eliminate glare and
ensure reliable visual input. For each bolt configuration, 20 trials were performed, and
both the number of successfully removed bolts and task completion time were recorded for
performance evaluation.

5.2.2. Result

The results indicate that the neural predicates and action primitives generated from
autonomous learning significantly improved operational efficiency. In the three-bolt align-
ment scenario, a total of 180 bolts were removed across 20 trials, achieving a 97.8% success
rate with an average execution time of just 1 min and 42 s. In contrast, the traditional
sequential method maintained a 100% success rate but required an average of 4 min and
17 s per trial. This represents a 154.4% improvement in disassembly efficiency. Additional
results are summarized in Table 2.
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Error analysis revealed that occasional failures in the optimized approach stemmed
from the accumulation of minor positional errors during sequential actions. Although the
new action primitives were able to infer bolt positions from learned spatial patterns, these
incremental deviations became more pronounced in scenarios with a larger number of
bolts, sometimes leading to missed disassemblies. Future work will incorporate correction
mechanisms to mitigate such errors and improve reliability in longer sequences.

Overall, the proposed NeuroSymbolic autonomous learning framework achieves
both high task success rates and improved execution efficiency in repetitive disassembly
scenarios. These findings also highlight the practical potential of integrating LLMs into
robotic task planning and adaptive control.

Table 2. Success rate and disassembly time for different tasks.

Disassembly Task Successful Attempts Unsuccessful Attempts
Quick disassembly of 3 bolts (total: 9) 173 7
Single disassembly of 9 bolts (total: 9) 179 1
Quick disassembly of 2 bolts (total: 8) 156 4
Quick disassembly of 4 bolts (total: 8) 152 8
Single disassembly of 8 bolts (total: 8) 180 0

Disassembly Task Success Rate Average Time
Quick disassembly of 3 bolts (total: 9) 96.10% 1min4ls
Single disassembly of 9 bolts (total: 9) 99.40% 4min 17 s
Quick disassembly of 2 bolts (total: 8) 97.50% 1min38s
Quick disassembly of 4 bolts (total: 8) 95.00% 1min2ls
Single disassembly of 8 bolts (total: 8) 100.00% 3min45s

6. Discussion

To address the limitations of conventional NeuroSymbolic disassembly systems in
leveraging historical experience for efficient bolt removal in electric vehicle battery (EVB)
packs, this study proposes a self-learning framework that derives optimized disassembly
strategies and action primitives from historical task data. By incorporating an LLM as
the system’s core reasoning engine, our framework analyzes both task history and scene
context to determine the potential for simplification and optimization. A trajectory learning
algorithm is also introduced to extract key positions from previously optimized trajectories,
allowing the system to bypass redundant visual recognition steps in repetitive tasks.

Experimental evaluations on a real-world robotic disassembly platform demonstrate
that the proposed method significantly improves disassembly performance. Specifically,
the average time to remove each bolt is reduced by 17 s, corresponding to a 154.4% improve-
ment in overall disassembly efficiency. These results validate the effectiveness of leveraging
historical task experience to derive efficient and reusable bolt disassembly strategies.

However, several limitations remain: the current LLM operates offline and is not
yet integrated into the system for real-time interaction; the diversity of EVB models in
the dataset is still limited; and the trajectory learning algorithm is primarily applicable to
surface bolts, lacking generalization to more irregular or hidden fasteners.

Future work will focus on collecting larger-scale datasets across a wider range of
EVB models to enhance generalizability. We also plan to integrate reinforcement learning,
imitation learning, and knowledge distillation techniques to learn more robust and gen-
eralized disassembly strategies, including those for internal modules. Moreover, we will
improve LLM prompt engineering to support more complex scenarios and investigate its
capabilities in code generation and error correction. Ultimately, we aim to build a fully
autonomous and adaptive battery disassembly system capable of real-time understanding,
strategy refinement, and self-correction across diverse and uncertain environments.
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7. Conclusions

This study proposes a NeuroSymbolic self-learning framework that integrates an
LLM and a trajectory learning algorithm to enhance the efficiency of electric vehicle bat-
tery pack bolt disassembly. The method overcomes the limitations of relying solely on
predefined PDDL, enabling action optimization in familiar scenarios. Experimental re-
sults show that the framework reduces the average bolt removal time by 17 s and im-
proves overall efficiency by 154.4%, validating the effectiveness of leveraging historical
task experience for reusable disassembly strategies. This work provides a feasible solu-
tion for intelligent battery disassembly and expands the self-optimization capability of
NeuroSymbolic approaches.
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