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Towards Agile Robots: Intuitive Robot Position
Speculation with Neural Networks

Yanlong Peng, Zhigang Wang, Yisheng Zhang, Shengmin Zhang, Ming Chen*

Abstract—The robot position speculation, which determines
where the chassis should move, is one key step to control
the mobile manipulators. The target position must ensure the
feasibility of chassis movement and manipulability, which is
guaranteed by randomized sampling and kinematic checking in
traditional methods. Addressing the demands of agile robotics,
this paper proposes a robot position speculation network(RPSN),
a learning-based approach to enhance the agility of mobile
manipulators. The RPSN incorporates a differentiable inverse
kinematic algorithm and a neural network. Through end-to-end
training, the RPSN can speculate positions with a high success
rate. We apply the RPSN to mobile manipulators disassem-
bling end-of-life electric vehicle batteries (EOL-EVBs). Extensive
experiments on various simulated environments and physical
mobile manipulators demonstrate that the probability of the
initial position provided by RPSN being the ideal position is
96.67%. From the kinematic constraint perspective, it achieves
100% generation of the ideal position on average within 1.28
attempts. Much lower than that of random sampling, 31.04.
Moreover, the proposed method demonstrates superior data
efficiency over pure neural network approaches. The proposed
RPSN enables the robot to quickly infer feasible target positions
by intuition. This work moves towards building agile robots that
can act swiftly like humans.

Index Terms—Neurosymbolic AI, Agile Robotics, Differen-
tiable Programming, Task and Motion Planning.

I. INTRODUCTION

In recent years, mobile robotics has garnered significant
attention within the realm of science and technology, un-
dergoing rapid expansion. This surge in interest is attributed
to its vast potential for applications, spanning diverse fields
that include scientific experimentation, additive manufacturing,
multi-robot cooperation, and collaborative efforts involving
both robots and humans [1]–[4]. As technology continues to
advance, mobile robots have begun to exhibit more autonomy
and intelligence, enabling them to perform tasks in a variety
of complex environments [5]. This has ignited a compelling
demand for profound research and innovation in the realm of
Task and Motion Planning (TAMP) for mobile robots.
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In the domain of task and motion planning for mobile
robots, the definition of TAMP problems and the choice of
planners with planning methodologies are significant. For
different types of TAMP problems, different planners and
planning methods can be selected to realize a variety of com-
plex dynamic manipulation tasks [6]–[9]. The search speed of
TAMP problems can be greatly improved by designing guided
planners that can be learned [10]. Additionally, the advances in
artificial intelligence provide powerful solutions for particular
tasks within mobile robotics, and the use of neural networks
to learn the general of near-optimal heuristics can be used to
design efficient neural planners [11], [12].

The emergence of third-generation artificial intelligence-
Neurosymbolism [13]–[16] provides a more effective solution
to the TAMP problem, which is analogous to human subjective
reasoning (subjective logic) through knowledge-driven logical
systems, and to human subconscious perception (subconscious
”intuition”) through probabilistic learning of neural networks
[17], [18]. This advances the current stage of AI systems
from perceptual intelligence to cognitive intelligence. In our
previous research, we built a NeuroSymbolic Task and Mo-
tion Planning Framework (NeuroSymbolic TAMP) based on
Planning Domain Define Language (PDDL) [19], [20] to
realize a robotic embodied control architecture [21]–[24]. The
framework uses PDDL to define disassembly primitives and
introduces neural predicates to map sensor data to quasi-
symbolic states for real-time computation, successfully accom-
plishing tasks such as continuous disassembly of end-of-life
electric vehicle batteries (EOL-EVBs) screws. When it comes
to manipulating the mobile robot for motion planning, the
quality of the sampling of the target chassis position is directly
linked to the robot’s task completion [25]–[27]. If the chassis
position is too close to the working object, it may lead to
collisions or robot kinematic singularities. Conversely, if the
position is too far from the target, it can exceed the operational
range of the robotic arm. When faced with a large workspace,
multiple task types, and complex sequences of work to be
performed, the accurate sampling of the chassis position of
mobile robots is necessary.

In the motion planning task about the chassis, we need
to know both the current chassis position and the intended
target position for chassis motion in advance to complete
the path planning and robot kinematics simulation. However,
when dealing with a workpiece at a given location, the target
chassis position is determined through random sampling [20].
This introduces uncertainty regarding whether the sampled
position can effectively accomplish the task. So it is necessary
to carry out the forward and inverse kinematics simulation of
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Fig. 1: Example: TAMP framework of disassembling a screw on a distant EOL-EVB based on NeuroSymbolic AI. (Left)
Task planning level. The planner outputs a sequence of action primitives to be executed according to the task. (Right) Motion
planning level. Chassis position speculative results affecting the realization of the task.

the robot in the simulator, which takes up a large amount of
computational resources for simulation.

The inefficiency of randomly sampling and simulating, to-
gether with the gap between simulation results and the real sit-
uation, are the key bottlenecks preventing robots from moving
towards agility. In the decision-making phase, motion control
relies more on established logical measurements for targeted
parameter resolution, rather than being able to swiftly adapt to
dynamically changing physical environments. The concept of
NeuroSymbolic AI introduces a novel approach that leverages
the perceptual abilities of neural networks and integrates them
with the differential problem-solving capabilities of physical
simulators for motion scenarios. This fusion enables robots
to enhance their adaptability, precision, and agility in every
facet of motion planning. To achieve this, we introduce neural
networks at the decision-making level. The work in this paper
will demonstrate its validity.

This paper proposes a robot position speculation net-
work(RPSN), a NeuroSymbolic AI based differentiable frame-
work designed for motion planning of mobile robots. The
RPSN offers a solution to the robot motion planning problem,
eliminating the need for time-consuming and costly random
sampling of target positions. When we tell RPSN the target
pose of the part to be worked with, it can directly speculate a
chassis target location with a high success rate for following
steps, which is similar to the human mind. Moreover, the
RPSN framework is data-efficient because differentiable IK
imports human knowledge into the system. There are three
main contributions that we have made:

1) We have programmed the robot’s forward and inverse

kinematics in a differentiable manner within computa-
tional graphs for integration into the training process.
This addresses challenges such as discontinuous func-
tions to ensure gradient continuity.

2) We have introduced an innovative loss function designed
to facilitate bootstrapping within the backpropagation
process, even without ground truth inputs.

3) We have creatively utilized dropout to generate network
randomization, which has yielded positive results.

II. TAMP WITH RPSN

Figure 1 illustrates the whole process of TAMP based on
neural symbolism and RPSN. Here, we present an example
of a mobile robot disassembling a bolt from an EOL-EVB.
The left side of Figure 1 is the task planning level, the
system determines the current state that the robot is in based
on the multimodal information such as torque, RGB images,
depth images acquired by the multisensors, which is sym-
bolically described using predefined neural predicates. Also,
action primitives having preconditions and execution results
are defined in the knowledge graph using the PDDL language.
Once the target state is known, the system uses a logical search
algorithm [22], [23] to find the best sequence of primitives to
reach the final state from the current state. The right side of the
image shows three distinct chassis target positions. Selecting
an appropriate chassis position is extremely important because
being too close can lead to collisions while being too far will
exceed the robot’s workspace. The central concern in this task
is how the mobile robot can efficiently and accurately perform
robot position speculation to find the target location when the



3

Fig. 2: Comparison of three chassis position sampling methods. (a) Randomized sampling motion planning (b) ANN method
motion planning (c) Motion planning by using RPSN.

sequence is executed to move the mobile chassis position. In
essence, when a mobile robot is required to perform a motion
primitive, the challenge is to ensure that it reaches a viable
position directly. This position should not only guarantee the
object’s presence within the robot’s workspace but also assure
the availability of a valid solution for the robot’s inverse
kinematics at that specific position.

Figure 2 shows the differences and distinctions between
motion planning using the traditional approach or using RPSN.
Figure 2(a) is the common method of the PDDL-STREAM
framework [20], [28]. For the chassis target position, the ran-
dom sampling method presents an assumed chassis position,
which is then employed in the robot’s inverse kinematics
calculation to determine the feasibility of a valid solution and
the robot’s reachability. However, Random sampling methods
often necessitate closed-loop feedback and multiple sampling
iterations to determine the correct final position. This pro-
longed process results in increased task duration and multiple
recalculations for the robot’s navigation. With the help of
neural networks (Figure 2(b)), this process can be optimized
using a large amount of data training, through which we hope
that the ANN can learn the implicit mapping relationship
between the current position and the target position, thus
outputting a more credible result. Compared with the previous
two methods, the RPSN(Figure 2(c)) proposed in this paper
consists of two modules: the Position Prediction Network and
the Differentiable Kinematics Calculation Engine. When the
pose of the bolt to be disassembled is inputted, the RPSN
can directly output the position that the chassis should reach
and provide the corresponding legal solutions for each joint,
which is approximate to the subconscious intuition of human
beings. This method will greatly improve the efficiency of
motion planning. Figure 3 illustrates the specific end-to-end

training and utilization. Comparative experiments on the three
methods will follow in a subsequent section to showcase
RPSN’s superiority in mobile robot motion planning.

It is worth emphasizing that the most essential difference
between RPSN and traditional neural networks is that no
ground truth data is provided during the training process.
The forward and inverse kinematics algorithms are added to
the training process of the neural network in a differentiable
way and are involved in learning to steer the output values
of the network before backpropagation. The traditional neural
network computational graph will be greatly changed due to
the addition of the robotic differentiable computation as a
computational node after the forward propagation. The details
of the algorithm’s differentiable process, the generalization
method, and the guiding of the loss function will be elaborated
in the next section.

III. RPSN TRAINING BASED ON DIFFERENTIABLE
ARITHMETIC PROCESS GUIDANCE

Figure 3 is a schematic diagram of the RPSN training
process and working process. In the task planning stage, when
a specific neural predicate triggers an action primitive that
requires the robot to move, the pre-trained RPSN starts to
work and provides the target position. The training stage of
RPSN is particularly worthy of our attention, as it involves
how to incorporate the differentiable programming property
of a mature algorithm [29]–[32] and incorporate it into the
neural network training process. Its differentiable property
approach should be generalizable to more mature algorithms
with scalability and universality. This chapter will focus on
the training process of RPSN and the general problems and
solutions of differentiable programming.
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Fig. 3: RPSN training and working details. (Blue) PDDL neural predicates in task planning with action primitive execution.
(Gray) Predicate Approach calling RPSN. (Yellow) RPSN training and loss function definition logic.

A. Computational graph construction and network training

The structure of the RPSN network requires that its robotic
inverse kinematics computational engine must be written into
the training process in a differentiable form. That means nei-
ther existing computational functions nor third-party libraries
can be added as nodes to the computational graph of the
neural network backpropagation due to their discontinuities.
Before detailing the differentiation process, it is necessary to
briefly describe the forward and inverse kinematics of the robot
followed by the RPSN differentiable kinematics algorithm. In
this paper, the differentiable algorithm follows the Denavit-
Hartenbarg convention [33], [34], and the homogeneous trans-
formation matrix of any joint i concerning its predecessor joint
i− 1 can be expressed as:

Hi−1
i = Ai = Rotz,θi Transz,di

Transx,ai
Rotx,αi

(1)

Where θ is the joint angle, d is the linkage offset, a is
the linkage length, and α is the linkage twist. When a total
homogeneous transformation matrix Htotal is known :

Htotal =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 =

(
R d
0 1

)
,

R ∈ SO(3), d ∈ R3

(2)

Then seek one or more solutions to the following equations,
the inverse kinematics of the robot is formulated as:

T 0
n (q1, · · · , qn) = Htotal

T 0
n (q1, · · · , qn) = A1 (q1) · · ·An (qn)

(3)

The qn denotes the value of the nth joint, which is ex-
actly the quantity we need to solve for in inverse kinemat-
ics. For the neural network input tensor, as in the previ-
ous example of the bolt pose to be disassembled, we give
Btar = [φ, θ, ψ, x, y, z], Btar ∈ R6. Considering that the
robot’s actual working process is unchanged compared to
the chassis position, so its pitch angle, lateral inclination,
and longitudinal displacement should be Zero. Under the
action of the Position Prediction Network, the robot target
chassis position Brob = [ψ, x, y] is obtained, with its positive
kinematics formulae derived from Eq. 1 for a six-axis robotic
arm as:

Htotal =

5∏
i=0

Hi+1
i (4)

Then the solution of its inverse kinematics under the differ-
entiable IK computational engine proposed in this paper can
be expressed as:

{
soluangle = IK(Htotal) = IK(HTranspose

rob ·Htar)
Hrob, Htar = S(Brob, Btar)

soluangle ∈ R8×6

(5)

where S is the differentiable transformation engine. S rep-
resents the procedure of transforming the neural network’s
output sequentially into Eulerian coordinates, followed by
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conversion into a rotation matrix, and ultimately into a ho-
mogeneous transformation matrix. These successive transfor-
mations are essential preparations for the IK process and
hold the crucial property of being fully differentiable. The
IK is a differentiable computational engine for the inverse
kinematics algorithm. The inverse kinematics solves eight sets
of solutions, each with six joint values, corresponding to the
six joints of the six-axis robotic arm, which can be expressed
as:

For k = 1, 2, . . . , 8 and n = 1, 2, . . . , 6

q(k) =


q
(k)
n

q
(k)
n

...
q
(k)
n

 , where q(k)n ∈ [−π, π]
(6)

During programming, in order to make this solution process
differentiable, we redefine the traditional matrixed inverse
kinematics solution by defining differentiable computational
processes such as IK and S using tensor operations to dis-
cretize the angular solution. This ensures that the robot’s
inverse kinematics solution can be added to the computational
graph. In particular, it is important to note that the Pytorch
framework already provides some computational methods that
can be used in writing algorithms. Including but not limited to
torch.mm matrix product, torch.stack dimensional reorganiza-
tion, and so on, which must be differentiable to be added to the
computational graph as part of the generalized forward propa-
gation. However, in the process of differentiable computation
for traditional computational methods, there are still some non-
differentiable functions or computations. The solutions to these
problems will be detailed in the next section. When we add
differentiable computational processes such as IK and S to
the computational graph, the computational graph becomes
extremely complex. Figure 4 shows the computational graph
under the ANN method. Blue nodes symbolize the leaf nodes,
while gray nodes signify intermediate nodes responsible for
computational operations. Notably, the MSE loss function
(’MseLossBackward0’ in the figure) actively participates in the
forward propagation process. As a comparison, the computa-
tional graph of the real participation in RPSN is too complex
to be presented intuitively. Please download and check it at the
link (see https://sites.google.com/view/sjtu-rpsn). Each node in
the computational graph is a differentiable mathematical op-
eration, and we must ensure that each step of the computation
is differentiable thereby ensuring that the computational graph
is passable. In that case, forward propagation can take place,
and special loss definitions are performed after passing through
the differentiable computational engine to guide the learning
of the network.

B. Details of the differentiable methodology

In the process of differentiating the entire computation, we
present the following three difficult problems:

1) Not all parts of forward and inverse kinematics can be
easily differentiated; How can discontinuous functions

Fig. 4: Computational graph of MLP with MSE

or functions beyond the domain of definition be differ-
entiable and participate in the computational graph?

2) RPSN as a model without ground truth data involved in
training, how can the loss function be defined to have
an effective bootstrap for training?

3) The parameters of the differentiable network are fixed
after the training is completed, how to ensure its feed-
back process as well as the randomness of the network
if it fails to give a legitimate solution during prediction?

For the first question, we will illustrate the general method-
ology with examples of the atan2 function and the arccos
function that jumps out of the domain of definition during
the training of the RPSN. For the second question, we will
present the loss functions defined by the results triggered by
the different scenarios during the computation of IK, as shown
in detail in Figure 3.

The tangent function has a period of 180 degrees. When
calculating the arctan function, there can be multiple tangent
values for a given angle. The standard Math.atan function
provides a single angle value, making angle determination
complex, and it results in infinite values at 90 degrees and 270
degrees of tangent. In robot inverse kinematics, we employ the
atan2 function as an effective solution for the inverse tangent.
The atan2 function is defined as follows:

https://sites.google.com/view/sjtu-rpsn
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atan2(y, x) =



arctan
(
y
x

)
if x > 0

arctan
(
y
x

)
+ π if x < 0 and y ≥ 0

arctan
(
y
x

)
− π if x < 0 and y < 0

π
2 if x = 0 and y > 0

−π
2 if x = 0 and y < 0

undefined if x = 0 and y = 0

(7)

It is clear that such an atan2 function is intermittent and
its participation in the computational graph leads to a direct
break in the gradient. Therefore it is necessary to redefine
the forward and backward propagation process of the function
itself as shown in Algorithm 1.

Algorithm 1 Differentiable Four-Quadrant Arctangent

1: class Atan2Function:
2: ▷ From torch. autograd.Function
3: function FORWARD(y, x)
4: result← CALCULATE ATAN2(y, x)
5: ▷ calculated using the discrete atan2 function
6: ctx←SAVE FOR BACKWARD(x, y)
7: return TENSOR(result, requires grad = True)
8: ▷ ctx records the return of the results
9: end function

10: function BACKWARD(ctx, grad output)
11: x, y ← SAVED TENSORS(ctx)
12: grad y ← d

dy atan2(y, x)← x/(x2 + y2)

13: grad x← d
dxatan2(y, x)← −y/(x2 + y2)

14: return grad output×grad y, grad output×grad x
15: end function
16: function MAIN
17: y ← GET INPUT Y
18: x← GET INPUT X
19: atan2← ATAN2FUNCTION.APPLY(y, x)
20: end function

Atan2Function defines its propagation process in the form
of a class. While forward propagation computes the results
and stores the values of the nodes, the derivation of backprop-
agation can be expressed as the gradient of the node equals
the result of multiplying the partial derivatives of that node
by the cumulative gradient passed from the previous node.
The relationship can also be seen as a concrete application of
the chain rule. In this way, this inherently non-differentiable
function successfully participates in the computational graph.
It turns out that by simply changing the function’s body,
this approach can be applied to address a range of formally
discontinuous functions, ensuring computational differentia-
bility. This will be a valuable asset in our differentiable
programming workflow. Another frequent differentiable error
in inverse kinematics occurs when an intermediate variable
falls outside the domain of the mathematical function that
operates on it. When confronted with this problem, our core
idea is to continue to use the pattern of Algorithm 1 to change
the forward and inverse operations of the function. Taking the
most common arccos function as an example, we know that:

F (x) = 0 ≤ cos−1(x) ≤ π,where− 1 ≤ x ≤ 1 (8)

When it appears that the value of the previous node in the
computational graph is outside its domain of definition, we
construct a new customized extended differentiable function
G(x), with the core arithmetic function arccos of the current
node as a base function. Taking δ > 0 and δ as sufficiently
small:

G(x) =


− (x−(−1+δ))√

1−(−1+δ)2
+ cos−1(−1 + δ), if x ≤ −1 + δ,

cos−1(x), if − 1 + δ < x < 1− δ,
− (x−(1−δ))√

1−(1−δ)2
+ cos−1(1− δ), if x ≥ 1− δ.

(9)
In our formula, we employ the concept of tangent lines for

construction. This is done because, inside the domain of the
definition of the arccos function, we want it to be computed
normally and participate in defining the loss function. At
the same time, the unsatisfactory part outside the domain of
definition can have such a large slope that it is penalized by the
network preference without interrupting the computation of the
graph. To do this, we need to ensure that the newly constructed
functions have equal values of the first-order derivatives at the
discontinuity points.

This ensures that even if the value passed in from the
previous node is out of the definition domain, the whole
computation engine will not be terminated due to error report-
ing. In practice, this change not only ensures the program’s
normal execution but also allows us to incorporate the out-of-
definition domain into the loss composition. This is beneficial
because this region typically has a steeper slope, resulting
in a larger contribution. During backpropagation, the out-of-
definition domain is penalized preferentially, represented as
Loutdom
i in Figure 3.
The solution to the second difficulty is inspired by the fact

that when the input does not give a ground truth, the only
pointers to training come from the various types of anomalies
and their defined losses during the computation. If we can
incorporate these losses into the bootstrapping of the neural
network, the neural network will output outputs that can pass
through all the computational maps to ultimately produce a
legitimate solution. Naturally, this is a qualitative analysis,
while the quantitative calculation of RPSN losses is provided
by the following equation:

Ltotal =
1

N

N∑
i=1

(U · δillrootLillroot
i + U · δoutdomLoutdom

i

+δillrootLillsolu
i + δidesoluLidesolu

i )
(10)

Where Lillroot
i as well as Loutdom

i denote exactly the
penalties for the location prediction network data on the
wrong branch during the differentiable computation process.
They guarantee that the inverse operation has the result as
shown in Eq. 6, even if the solved angle value is illegal.
For numerically illegal angle values beyond [−π, π], we use
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Lillsolu
i to penalize them. Obviously, if there exists any one

of the eight sets of solutions where all the angular values of
the angular solutions are within the legal range, the loss will
be defined as 0, that is, Lidesolu

i . The δ in Eq. 10 represents
the weighting relationship between the different parts of the
losses, which will determine which losses are preferentially
penalized during backpropagation. In particular, for the inverse
kinematics computation process included in the RPSN, we
specifically define U. When it takes 1, the loss function
takes into account the loss from all the errors in the inverse
kinematics computation process that deviates from the correct
data flow, which is the task-specific loss. When it takes 0, we
only define the loss and guide the training for one or more sets
of illegal values in the final angular solution. Apparently, the
former is more relevant for the present application scenario and
the loss is defined more strictly, while the latter is an attempt
of ours regarding the definition of loss in general problems
and generalized scenarios.

To address the third challenge, we introduced an additional
Dropout layer to the Position Prediction Network of RPSN, as
illustrated in Table I. During testing, the Dropout layer remains
active. When the Differentiable Kinematics Calculation Engine
detects unsatisfactory outputs from the trained model, the
testing process is restarted, and RPSN generates a fresh set of
solutions. Since no loss is computed and no backpropagation is
performed during this phase, the Dropout layer plays a crucial
role in introducing randomness. Each regenerated result is
generated by accessing the well-trained model, and any prior
failures do not influence the current outcome.

IV. EXPERIMENTS AND RESULTS

A. Experiments Setup

Fig. 5: Hardware platform

In order to validate the effectiveness of the proposed method
in this work, we use the disassembly of EOL-EVBs bolts as
a practical application scenario to explore the performance
demonstrated by the RPSN in terms of training and testing.

Figure 5 is our experimental hardware platform, which con-
sists of an AGV trolley with its mounted 6-axis collaborative
robot UR10e working on a to-be-disassembled EOL-EVB.

Fig. 6: Training plots for the three methods. Top-down training
accuracy curves for ANN, RPSN1, and RPSN2 respectively
(with 500 sets of data for example).

As Figure 2 introduces the RPSN structure, its Position Pre-
diction Network is a common ANN model. Therefore, we con-
ducted comparative experiments to demonstrate the difference
in training outcomes when incorporating the computational
engine for differentiable kinematics into the computational
graph compared to a single ANN. The specific experimental
training information is shown in Table I. We built the network
model based on PyTorch and provided the training of ANN
with the end-effector position required for the disassembly task
in the same coordinate system with a chassis position that
can accomplish the disassembly task. The loss between the
network output and the ground truth is defined by MSEloss.
For the training of the RPSN, the input data is a single end-
effector pose required for the disassembly task, and its loss
can be categorized into two cases according to the definition
of Eq. 10. RPSN1 represents a more stringent task-specific
loss, while RPSN2 represents a more general loss based on
the use of a differentiable method as described in the previous
section. In this case, the output dimension of the ANN is kept
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Fig. 7: Test accuracy curves for the three methods after training
with different data amounts. The data volume ranges from 50
to 3200 groups.

TABLE I: Training information for each model

Model Composition Loss function Hyperparameter
optimization

ANN

input layer = 6
hidden layer = 50

Dropout
hidden layer = 50
output layer = 6

MSE Ray.tune

RPSN1

input layer = 6
hidden layer = 50

Dropout
hidden layer = 50
output layer = 3

IK

Ltotal

U = 1
Ray.tune

RPSN2

input layer = 6
hidden layer = 50

Dropout
hidden layer = 50
output layer = 3

IK

Ltotal

U = 0
Ray.tune

the same as the input data, making it easy to learn the mapping
relationship between the spatial computational transformations
during the training process.

To evaluate model performance under varying data volumes
effectively, we designed ten different data volume sets, ranging
from a minimum of 20 groups to a maximum of 3200
groups, for training and testing the three models. To ensure
that the training hyperparameters are optimal under different
data volumes and model conditions, we use Ray-tune [35]
to search for optimal hyperparameters. It is guaranteed that

TABLE II: Training Configure
Configure Information
CPU/GPU Intel Core i7-12700H/RTX 3060

Epoch 400
Learning rate uniform(0.001, 0.01)

Batch size choice([2,4,5,8,16])
Scheduler ASHAScheduler

Grace period 150

each network model is randomly selected at least 30 times
for hyperparameters under each data volume, and the network
models trained with optimal hyperparameters are recorded
with their test results. Training-related information is shown
in Table II.

B. Experiments Details

Due to the large number of experimental batches, we chose
the training process of the three models in 500 sets as shown
in Figure 6. Compared to the RPSN, the ANN network
converges faster and has largely converged before 50 epochs.
However, the large computational graph does not make the
training process slow and time-consuming for the RPSN,
which basically reaches convergence around 100 epochs and
has a slow increase thereafter. The vertical coordinate rep-
resents the amount of data passed along with the training.
The final training accuracy of the ANN method converges
at around 53.69%, while the RPSN is higher than 94% for
both cases. Figure 7 displays the test set results obtained from
training three different models with varying amounts of data,
with the RPSN model achieving the highest test accuracy
at 95.67%. Meanwhile, ANN needs larger data support in
training its parameters in a more optimal direction. The
existing volume of data falls short of meeting the parameter
refinement requirements for ANN, resulting in a test accuracy
of approximately 50%. In contrast, the RPSN demonstrates
an impressive accuracy exceeding 90% with only 1000 sets of
training data. This excellent data efficiency can be attributed
to the inclusion of differentiated kinematics algorithms as a
priori knowledge within the framework.

It is important to emphasize that the experimental results
depicted in Figures 6 and 7 represent explorations into the
fundamental performance of RPSN, undertaken without the
introduction of randomization. Compared to random sampling
methods, RPSN shows amazing advantages in small data
size, no ground truth, and fewer epochs of the training pro-
cess. However, when undesirable situations below 5% occur,
the fixed model requires multiple network models that have
completed training to work together to ensure a 100% task
completion rate. Thus, we introduce the network random-
ization methods described in Section III-B for a more in-
depth comparative experimental exploration by controlling the
degree of randomization during network training and testing.
In this way, we aim to achieve a 100% success rate by relying
solely on the combination of a single pre-trained RPSN with
the feedback mechanism.

Table III shows the comparison experiments conducted with
RPSN1 as the base network. In Case 1, the dropout layer is
deactivated during both the training and testing phases, while
the number of neurons in the hidden layer remains constant
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TABLE III: Experimental Setup Introducing Randomness
Dropout(Training) Dropout (Testing) Epoches Dropout Rate

Case1 Deactivated Deactivated 400 None
Case2 Activated Activated 1000 2%-15%(use Ray-tune)
Case3 Deactivated Activated 400 Consistent with case2 optimal result

Fig. 8: Real-world experiments information and results.

Fig. 9: The effect of randomization on the convergence of the
training process.

TABLE IV: Average sampling times for each model
Average samples(times)

Random sampling 31.04
Pure ANN 3.06

RPSN1 1.28
RPSN2 1.42

throughout the operation of RPSN. The experimental results
are shown in Figures 6 and 7. Case 2 is the usage of dropout
involved in training and testing as mentioned in Section III-B,
and randomization occurs not only in the training process but
also in the prediction process. Case 3 is based on the training
of case 1, where network randomization is activated only in
the testing phase. The selection of 1000 training epochs in
Case 2 is deliberate. We have illustrated the training details
for epochs 200-400, as depicted in the figure 9. The only
variable considered was the introduction of randomization.
When randomization is introduced into the training process
of RPSN, the number of legal solution sets still exhibits
significant fluctuations around the 400th epoch, showing an

Fig. 10: Comparative experiments on RPSN with the introduc-
tion of randomization methods.

overall upward trend. Clearly, more training is required to
achieve a better convergence effect. Figure 10 shows the
performances of the three methods with different datasets.

Through experiments, it is found that when the random-
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ization method is introduced into the training and testing
process, the accuracy has more obvious fluctuations in adjacent
epochs. The reason for this is that the dropout’s culling of
hidden neurons is completely randomized, which prevents the
network from overly relying on certain neurons to get the
desired output. Therefore, when randomization is involved
in training, the RPSN needs to go through more rounds to
achieve a similar accuracy as in case 1, and the introduction
of randomization makes the individual hidden neurons more
homogeneous. The experimental results show that after intro-
ducing the randomization method proposed in this paper, the
RPSN achieves a single prediction accuracy of 96.67%, but it
takes longer time and training epochs to reach convergence.
The accuracy of this method is significantly higher than that
of the method in case 3 where randomization is introduced
only in testing. Therefore, despite the fact that the addition of
randomization increases the training epoch, we still prefer this
approach in our deployments

To further validate the advantages of RPSN, we provide
the same to-be-disassembled bolt pose for different motion
planning methods. The aim is to determine how many times
of samples are required to reach the final chassis position when
using various methods. The experimental results are shown in
Table IV, where we provided 300 sets of data and calculated
the mean value of the number of times all data were sampled.

C. Real Device Experiments in Disassembly Scenarios

We deployed the RPSN for experiments in real-world
scenarios, where the AGV is required to carry the UR10e
to autonomously disassemble the surface bolts of the EOL-
EVB. The RPSN is utilized in the NeuroSymbolic TAMP
framework [22] and acts as the primitive ”Approach ” in
guiding the entire autonomous movement of the AGV chassis.
To comprehensively assess the performance of RPSN across
various usage scenarios, we formulated four tasks. The cor-
responding task scenarios and requirements are illustrated in
Figure 8. Through over 80 times of real-machine experiments,
we observed that the RPSN accurately samples positions
in actual disassembly scenarios with a 100% success rate.
This achievement is attributed to both the high accuracy of
the RPSN and the feedback checking. Demonstration videos
for the four tasks are accessible on the paper’s website(see
https://sites.google.com/view/sjtu-rpsn).

During experiments in real-world scenarios, we identified
certain safety concerns. While some positions provided by
the RPSN meet the kinematic constraints, they may still
exhibit a notable distance from the bolt location. If the arm
extends beyond a specific length, the tilting moment becomes
excessive, making the AGV prone to overturning and causing
one side of the wheels to lift off the ground. Preventing such
occurrences requires an analysis that integrates static stabil-
ity margin(SSM), Tumble Stability Margin(TSM), and other
metrics [36]–[38]. In this experiment, a distance clustering
method is employed to establish a safety zone for the chassis.
We contemplate incorporating these stability constraints into
the training process of the network in a differentiable form in
future work. Aiming to make them an inherent part of the net-

work’s intuition, thereby enhancing safety during operational
processes.

D. Summary of Experiments

Experimental data shows that in the EOL-EVB disassembly
scenario, RPSN can reliably determine the target chassis posi-
tion for a given bolt without the need for sampling, planning,
or simulation. The robot has a probability of completing the
disassembly work directly in the position with a probability
of 96.67%. The Differentiable Kinematics Calculation Engine
can also act as a feedback check. Even in the event of an initial
sample failure, the RPSN possesses the capability to swiftly
re-sample, ensuring the generation of a reliable position with
a 100% success rate. RPSN1 has an average sampling number
of only 1.28 out of the 300 times of test data which will save
a large amount of arithmetic power compared to the random
sampling method which has 31.04 iterations of attempts and
simulations.

The applications of this network model extend beyond
battery pack disassembly. It pertains to all scenarios involving
mobile robot motion planning, encompassing target position
selection, forward and reverse kinematics, which are precisely
the problems addressed by RPSN. Similar to humans, a robotic
arm is akin to a human arm. Just as humans instinctively
understand how their legs must position themselves to enable
their arms to reach, grasp, and stably hold an object on a
distant table. In contrast, robotic arms have fewer degrees
of freedom and can suffer from kinematic singularities. With
the help of the RPSN, the robot overcomes these problems
well and seems to be able to have subconscious decision-
making, which is just in line with the cognitive and embodied
intelligence of robots in the NeuroSymbolic AI framework.

V. CONCLUSIONS

Mobile robot motion planning often requires numerous
iterations of random sampling and kinematic simulation to pin-
point the target chassis’s position. To address this problem, we
designed RPSN based on the concept of the NeuroSymbolic
AI. The RPSN, comprising a Position Prediction Network and
a Differentiable Kinematics Calculation Engine, can directly
output a highly plausible chassis position, given the pose
of the working object, under which the robot kinematics is
guaranteed to have a solution. We deployed the RPSN on
EOL-EVB disassembly application scenarios. Our rigorous
experimental validation in End-of-Life Vehicle Battery (EOL-
EVB) disassembly application scenarios demonstrated that the
RPSN can achieve an impressive 96.67% accuracy in initially
determining the target chassis location. Furthermore, iterative
sampling consistently provides 100% valid chassis locations,
averaging 1.28 times.

In this study, We pioneered an approach integrating robots’
forward and backward kinematics into the neural network’s
computational graph through differentiable programming. This
integration redefines the traditional neural network training
paradigm, significantly reducing the dependency on data dur-
ing training. It opens a door for our future research, integrating
differentiated classical algorithms with neural networks and

https://sites.google.com/view/sjtu-rpsn
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rapidly guiding the learning of reliable speculative neural
networks through mature knowledge. In the next step, we
will attempt to introduce collision detection into the system,
further enhancing the agility of robots and contributing to the
advancement of embodied intelligence.
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