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Abstract. The rapid growth of the electric vehicle industry has created a sig-
nificant demand for the recycling of end-of-life electric vehicle batteries (EOL-
EVB). Manual disassembly methods suffer from low efficiency, highlighting the
urgent need for intelligent disassembly solutions for electric vehicle batteries. A
major challenge in intelligent disassembly is dealing with uncertainty, especially
when it comes to the disassembly of screws, which vary in shape, size, and rust
level. To address this challenge, we present a multifunctional screw disassembly
workstation specifically designed for the disassembly of screws, which consti-
tutes a substantial portion of the EOL-EVB disassembly process. The workstation
incorporates an automated sleeve replacement device that can seamlessly replace
and disassemble sleeves during disassembly. Additionally, we propose a screw-
type recognition method based on attributes, enabling the identification of vari-
ous screw attributes to determine appropriate disassembly methods. This method
exhibits scalability and requires only a small amount of data. By expanding the
capabilities of our previous Neurosymbolic TAMP (Task and Motion Planning)
work, we can support multiple types of screw disassembly and integrate it into the
overall process of EOL-EVB disassembly, significantly reducing repetitive tasks
such as screw disassembly during the disassembly process. Experimental results
demonstrate the effectiveness of the workstation in disassembling multiple types
of screws within a realistic disassembly environment.

Keywords: EOL-EVB · automatic disassembly · sleeve replacement device ·
recognition · attributes · NeuroSymbolic TAMP

1 Introduction

The disassembly of end-of-life electric vehicle batteries (EOL-EVB) presents an oppor-
tunity for resource reuse and recycling, which can help reduce the demand for new
resources, environmental pollution, and resource waste. Additionally, recycling rare
metals and other valuablematerials fromEOL-EVB can provide necessary rawmaterials
for manufacturing new batteries. According to a report by Deloitte - a market research
and consulting firm - the global electric vehicle battery recycling market is expected to
grow from 5.5 billion yuan in 2021 to 299.7 billion yuan in 2028, with a compound
annual growth rate of 55.92% [1]. This suggests a promising future for the recycling of
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discarded electric vehicle batteries. With the increasing number of electric vehicles, the
recycling and reuse of EOL-EVB will become an increasingly important issue.

Currently, manual disassembly is the primary method for disassembling EOL-EVB
[2]. The main reason is that EOL-EVBs come in various brands, models, and speci-
fications, which require different processing methods depending on the specific situa-
tion. Furthermore, the use process of EOL-EVB can cause significant changes, further
increasing the uncertainty during the disassembly process. Even the simple task of dis-
assembling screws can be challenging due to uncertainty. If the EOL-EVB has under-
gone deformation, the screw’s position cannot be determined based on the existing bat-
tery model. If the EOL-EVB had been repaired before being scrapped, the screw type
might have been changed. Similar issues exist, and they represent significant obstacles
to achieving automated disassembly using robots. Some existing research has devel-
oped customized systems. Due to a lack of autonomy, they are only suitable for static
environments (clean, non-deformable, and specific types of batteries) [3,4].

In the field of intelligent disassembly, the existing methods proposed mainly focus
on task planning, Among them, one research [5,6] is based on a cognitive robot system
to realize the disassembly of products, The system is equipped with four cognitive func-
tions: reasoning, execution monitoring, learning, and revision. Another research [7] pro-
posed an intelligent disassembly system based on intelligent vision, which incorporates
image processing, machine learning, close loop control, multi-agent, and disassembly
planning. Munir merdan et al. Proposed an ontology based automatic disassembly sys-
tem [8], which couples the ontology with visual information to dynamically determine
the disassembly action of the robot to achieve more flexible action. However, these
methods often can not meet higher requirements for the accuracy of disassembly and
can not complete the disassembly of small objects (such as screws).

In the past, there were also many studies on accurate positioning and disassembly,
Such as adjusting the posture of an object using tactile feedback to achieve a desired
nesting task [9,10], Another study [11] uses the moment probability function to match
the object surface and the finger surface through the object point cloud map to achieve
accurate grasping, Alireza rastegarpanah et al. [12] determine the position and atti-
tude of objects through model-based feature matching, but these methods do not apply
to small objects and flexible end effectors. In addition, Li Xinyu et al. [13] utilized
Faster R-CNN (high-performance deep learning algorithm) and innovative Rotating
Edge Similarity (RES) algorithm to achieve high-precision positioning and classifi-
cation of screws, but due to the long computational time, it is not suitable for actual
disassembly tasks. Some studies [14–16] use target recognition based on grayscale val-
ues and contours to detect screws or use grayscale maps, depth maps, and HSV values
to detect screws. These methods have improved the positioning accuracy of screws to
a certain extent, but they cannot accurately classify various attributes such as the shape
and rust of screws, and cannot be effectively applied in actual disassembly tasks.

The peak of EOL-EVB disposal is imminent, and automated disassembly of EOL-
EVB is urgently needed. In our previous work, we successfully completed the continu-
ous disassembly of a single screw in the battery pack using the framework of Neurosym-
bolic TAMP, introducing neural predicates and action primitives [17,18]. In this paper,
we focus on the task of screw disassembly, which accounts for 40% of the disassem-
bly work [19,20], and design a multi-functional screw disassembly workstation. This
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workstation has customized end effectors and sleeve replacement devices, enabling it
to disassemble various types of screws at the mechanism level. In addition, force feed-
back devices and visual perception modules provide multimodal sensing capabilities
for workstations and propose attribute based screw-type recognition methods. Addi-
tionally, force feedback devices and visual perception modules provides the worksta-
tion with multi-modal sensing capabilities. Most importantly, we establish a neural-
symbolic planning system that significantly enhances the robot’s intelligence, ensuring
efficient and accurate completion of the screw disassembly task.

In summary, this paper introduces three key innovative contributions: 1. Expansion
of NeuroSymbolic TAMP: Building upon the original NeuroSymbolic Task andMotion
Planning (TAMP) framework, this study extends its capabilities to support multiple
types of screws. This advancement significantly broadens the potential applications of
this method in battery disassembly and related processes.

2. Development of a Reliable Screw Replacement Mechanism: A novel screw
replacement mechanism has been designed and implemented, ensuring continuous and
stable operation. This mechanism holds promise for application in various screw-related
tasks beyond the scope of this study.

3. Attribute-based Screw Type Recognition Method: A screw-type recognition
method based on attributes is proposed, which exhibits scalability and requires minimal
data. The effectiveness of this method will be further evaluated in subsequent research
and development, specifically for industrial part recognition tasks.

Overall, these innovations contribute to advancing intelligent disassembly pro-
cesses, expanding the capabilities of existing frameworks, and providing practical solu-
tions for screw-related tasks in battery disassembly and beyond.

2 Screw Disassembly Workstation

This workstation aims to achieve rapid disassembly of various types of screws through
autonomous motion planning and manipulation of robots to improve work efficiency.
The main structure of the workstation is divided into a task planning layer, a multimodal
sensing layer, and a mechanical structure layer. Figure 1 shows the main structure of
the workstation. This workstation supports disassembling screws of various shapes and
specifications. The operator only needs to place the parts to be disassembled on the
workstation, and the system will automatically carry out disassembly planning; The
visual perception module installed on the robot will automatically find the position of
the screws and classify them; In order to adapt to various types of screws, the worksta-
tion is equipped with various types of disassemblers. When the workstation finds that
the types of screws do not match, it will automatically replace the corresponding dis-
assembler to ensure smooth disassembly; The robot is equipped with a force feedback
device that can adjust the splicing action based on the shape of the screw and the force
feedback of the current splicing situation, thereby achieving more accurate disassembly
operations. For some severely corroded screws, conventional disassembly methods may
not be effective. This workstation can perform special treatments based on the situation
of the screws, such as using a power saw or milling cutter for destructive disassembly
or using methods such as electrolytic rust removal, to facilitate disassembly.
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Fig. 1. The main structure of the workstation: 1) task planning layer. 2) multimodal sensing layer.
3) mechanical structure layer.

In summary, this workstation has the characteristics of intelligence and efficiency,
which can adapt to various types of screw disassembly, and can perform fine processing
for different situations.

2.1 Task Planning Layer

The task planning layer includes a task planner and an action planner. The task planner
obtains disassembly environment information through multimodal perception, gener-
ates subtask execution sequences based on the current disassembly environment and
disassembly tasks, and corrects subsequent subtask execution sequences based on the
real-time disassembly environment during the subtask execution process, improving the
efficiency and success rate of disassembly; The action planner generates a robot action
trajectory based on the generated subtasks and combines multimodal perceptual infor-
mation to drive the robot to execute.

2.2 Multimodal Sensing Layer

The multimodal sensing layer consists of a variety of sensors, including RGB cameras,
depth cameras, and force sensors. The RGB camera and depth camera are Realsense
D435, which are installed on the end effector and can obtain RGB image information
and depth image information of the area in front of the end effector during robot move-
ment; The six-dimensional pose of the target in three-dimensional space relative to
the robot base coordinates is obtained by fusing multiple image information obtained in
real-time, providing a basis for subsequent task planning and action planning. The force
sensor uses ATI multi-axis force/torque sensors, which can measure and output forces
and torque at various coordinates in the Cartesian rectangular coordinate system; Real-
time detection of the forces and torque applied to the end effector during the robot’s
movement corrects the robot’s movement and better realizes the disassembly action.
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Fig. 2. End effector.

Fig. 3. Sleeve replacement devices.

2.3 Mechanical Structure Layer

The mechanical structure layer mainly includes end effectors and sleeve replacement
devices. The main mechanical structure is shown in Fig. 2 and Fig. 3. The end effector
is a screw disassembler driven by a motor to drive the sleeve rod and sleeve to rotate to
complete the screw disassembly; The sleeve rod is connected to the main body of the
disassembler by a spring, providing passive flexibility in the vertical direction for the
end effectors. At the same time, the sleeve rod is flexibly connected to provide passive
flexibility in the horizontal direction for the socket connection. These designs reduce the
accuracy requirements required for the end effectors during the screw socket connection
process.
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In order to adapt to various screw disassembly tasks, it is necessary to design a
sleeve replacement device for the workstation, which is mainly composed of a rotating
disc carrying multiple sleeves, a stepping motor, a clamping jaw, and a housing. There
is a sleeve removal position and a sleeve installation position on the housing. The motor
drives the sleeve disk to rotate the required sleeve to the desired position. When it is
necessary to remove the sleeve, insert the end effectors with the sleeve into the sleeve
removal position. Press to make the left and right clamping jaws tightly grasp the sleeve
to fix it, and lift the end effectors to separate the sleeve rod from the end effectors; When
a new sleeve needs to be installed later, insert the end effectors into the sleeve mounting
position, and press to connect the end effectors to the sleeve to complete the installation
of the new sleeve.

When it is necessary to disassemble severely rusted screws, it is not possible to use
sleeve rotation for disassembly. At this time, a milling cutter disassembler needs to be
designed to grind the rusted screws flat and complete the disassembly.

When it is necessary to disassemble screws without a suitable disassembly sleeve,
it is not possible to disassemble them. Instead, a power saw disassembler needs to be
designed to cut a groove in the screw and then use a slotted screw sleeve for disassembly.

3 Disassembly Implementation Details

3.1 Task Planning

NeuroSymbolic TAMP. The advantages of NeuroSymbolic TAMP lie in its inter-
pretability, learnability, and extensibility. By introducing neural predicates, the system
can abstract and represent the features of small fastener disassembly. At the same time,
the continuous optimization and expansion of action primitives also enable the system
to adapt to more complex disassembly tasks.

When applied to screw disassembly, the system can sense the disassembly envi-
ronment through multimodal sensors, and use NeuroSymbolic to abstract information
such as the position, shape, and characteristics of screws into understandable symbolic
forms, thereby avoiding the use of complex methods to identify screw features. By
generating action primitive sequences that conform to logical reasoning, the system can
directly drive the robot to complete the disassembly task. The training and enhancement
of neural predicates and the expansion and optimization of action primitives enable the
system to better adapt to different types of screws, thereby improving the accuracy
and efficiency of disassembly. In previous work, the advantages of NeuroSymbolic
TAMP in disassembling small fasteners in unstructured environments have also been
verified [17].

Neural Predicates and Action Primitives. In previous work, two neural predicates,
“target aim()” and “target clear()”, was defined to determine whether the end effector
is consistent with the position and posture of the target object and whether there are
obstacles around or above the target object. At the same time, eight action primitives
are defined, including “Approach”, “Mate”, “Push”, “Insert”, “Fumble”, “Search”, “Re
insert”, and “Disassemble”. This intelligent disassembly system can achieve continu-
ous and stable disassembly of a single type of screw, but in reality, there are many
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Table 1. Description of Disassembly Primitives

Primitive Pre-condition Result Function Description

Recognize 1. The sleeve is aligned with the
screw;
2. There are no obstacles near the
screw.

1. The system has completed
screw type identification;
2. The system completes the iden-
tification of the degree of screw
corrosion;
3. The screw type matches the
sleeve type.
4. There is matching sleeve in the
sleeve replacement device

This primitive identifies the type,
specification, and degree of
corrosion of the screw currently
being disassembled. Determine if
there is a matching sleeve in the
sleeve replacement device.

Change 1. The system has completed
screw type identification;
2. The screw type does not match
the sleeve type;
3. There is a matching sleeve in
the sleeve replacement device.

1. The screw type matches the
sleeve type.

This primitive drives the robotic
arm to replace a sleeve that
matches the current screw shape
and specification.

Cut 1. The system has completed
screw type identification;
2. There is no matching sleeve in
the sleeve replacement device.

1. The screw type changed to a
flat-head screw.

This primitive cuts screws
without matching sleeves into
slotted screws.

Mill 1. The system has completed the
identification of the degree of
screw corrosion;
2. The target screw is severely
rusted.

1. The screw disassembly is
completed.

This primitive grind the severely
rusted screws flat.

Table 2. Description of Predicates

Predicate Function Description

target match(senor) This neural predicate means that the shape and specification of the
current screw can be disassembled using the currently equipped sleeve.

exist sleeve(senor) This neural predicate means that there is a matching disassembly sleeve
for the current screw.

target rust(senor) This neural predicate means that the degree of rust on the screw is very
severe.

types of screws in disassembly work, with different shapes and sizes. A disassembly
workbench that can only disassemble a single screw cannot be extended to a real dis-
assembly operation. To solve this problem, We have added the neural predicate “tar-
get match()”, “exist sleeve()” and “target rust()” to determine whether the current tar-
get screw matches the currently assembled disassembler, whether there is a match-
ing sleeve, and whether there is excessive rust. Four action primitives, “Recognize”,
“Change”, “Cut” and “Mill”, are newly defined to identify the feature type of the current
target screw, drive the robot to automatically replace the disassembler when the disas-
sembler and target screw types are inconsistent, cut screws without matching sleeves
and grind down severely rusted screws.

The definition of its action primitive is shown in the following Table 1.
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The implementation of the action primitive “Recognize” is to move the end effector
to a position 20mm directly above the target screw, acquire the RGB image captured
by the camera at the current position, and input it into the YOLO network. The YOLO
network is a screw position recognition network whose main functions are to obtain
the center position of the positioning frame, the size of the positioning frame, and the
captured screw image of the target screw. Then input the captured screw image into the
VAE network to determine the shape attributes of the current target screw, and combine
the size of the positioning frame to obtain the size of the screw to comprehensively
determine the specific model of the screw. Compare the type of the target screw with
the sleeve type on the current end effector: If the type matches, set “target match()” to
True; If the types do not match, set “target match()” to False (Table 2).

Implementation of the “Change” Primitive. When executing the action primitive
“Change”, we need to input the current end effector position, current sleeve type, and
target sleeve type. In order to allow the end effector to be vertically inserted into the
sleeve replacement device, two pre-replacement positions have been set, which are
located 20mm above the sleeve installation and removal port. Firstly, place the current
sleeve back into the sleeve replacement device, drive the stepping motor to rotate the
rotating disc and move the current sleeve placement position below the removal port,
move the end effector from its initial position to the pre-replacement position at the
removal port, and insert it vertically downwards into the removal port. At this time, the
sleeve contacts the screw locator and compresses the spring in the end effector, Drive
the end effector motor to rotate slightly so that the notch under the sleeve matches the
shape of the screw locator. The spring in the end effector is released and pressed down
on the sleeve and support plate (supported by a spring between the support plate and the
rotating disc). The support plate presses down on the lower part of the clamping claw,
causing the clamping claw to tighten in the middle and make contact with the upper
part of the sleeve. At this time, move the end effector upwards to remove the current
sleeve; The next step is to install the target sleeve. Drive the stepping motor to rotate
the rotating disc and move the target sleeve below the installation port, move the end
effector to the pre-replacement position at the installation port, and vertically insert it
into the installation port. At this time, the empty rod contacts and compresses the target
sleeve, causing the spring in the end effector to compress. driving the end effector motor
to rotate slightly to fit the shape of the gap on the rod and sleeve, The spring release
in the end effector compresses and installs the sleeve onto the end effector, and then
moves back to the initial position to complete an automatic replacement of the sleeve.
Update the current casing type in the planner and set “target match()” to True.

Execution Flow Chart. Firstly, when obtaining a rough positioning position of the
screw to be disassembled, the execution action primitive “Approach” moves to the
vicinity above the screw; When there are obstacles around the target screw, execute
the action primitive “Push” to clear the obstacles; When the end effector is not aligned
with the target screw, execute the action primitive “Mate” to align it; When there are no
obstacles around the target screw and the end effector is aligned with the target screw,
the execution action primitive “Recognize” identifies the current screw type and spec-
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Fig. 4. Execution Flow Chart.

ification; When the screw type and specification do not match the sleeve, execute the
action primitive “Change” to replace the appropriate sleeve; When the screw type and
specification match the sleeve, execute the action primitive “Insert”; According to the
force feedback data during the sleeve connection, select and execute some or all of the
action primitives “Fumble”, “Search”, and “Re insert” until the screw socket connec-
tion is successful. Execute the action primitive “Disassemble” to remove the current
screw and proceed with the disassembly of the next screw. When the target screw does
not have a matching sleeve during the disassembly process, execute the action primi-
tives “Cut” to turn it into a This primitive cuts screws without matching sleeves into
slotted screw and use a slotted screw sleeve for disassembly. When the target screw is
severely rusted during the disassembly process, execute the action primitives “Mill” to
grind it flat.

The flow diagram is shown in the Fig. 4.

3.2 Screw Type Recognition Based on Attribute

In contrast to conventional detection methods that directly rely on types of object detec-
tion, our approach utilizes a series of classifiers to categorize the various attributes of
screws. For instance, we classified screws into four categories based on the degree
of rust, ranging from “no rust” to “severe rust”. Additionally, we employed shape-
based classification, distinguishing “outer hexagonal”, “inner hexagonal” and so on.
This methodology offers several significant advantages:

1. Sufficient availability of training data: During the training phase of the object detec-
tion network, we found it advantageous to group all screws together and consider
them as a single class. However, when training for attribute classification, we orga-
nized screws with similar attributes into distinct groups. This approach eliminated
the need to partition the limited data into numerous small classes for training pur-
poses. Importantly, our investigation revealed that subdividing the data into smaller
classes would not meet our requirements within the dataset.

2. Combination of multiple attributes: By combining different attributes, we were able
to infer and identify screws that were not originally present in the dataset. This
capability demonstrates the versatility and robustness of our approach, enabling it
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to handle screw types that were not encountered during the initial data collection
phase.

VAE Recognition Algorithm. Our system uses VAE to classify attributes for several
reasons: 1 Subsequent experiments have shown that VAE performs best in our dataset;
2. VAE facilitates the expansion of attributes in the future. For example, the degree of
corrosion can be divided into no rust and severe rust. If future treatment methods require
recognition of mild and moderate rust, we can generate a new classification method by
defining the distance from the existing two categories without retraining this attribute.

The VAE network is an unsupervised learning network, which obtains an encoder
and a decoder through training and can encode pictures into feature vectors contain-
ing their various attributes and restore them through the decoder. VAE networks can be
trained with a small amount of data, and can effectively extract target attribute infor-
mation such as shape, color, and state from images. Therefore, VAE networks are very
suitable for classifying various small fasteners such as screws in unstructured scenes.

The conventional VAE loss function is defined as:

L(x) = Eq(z|x)[log p(x|z)] + β ·DKL(q(z|x)||p(z)) (1)
but this loss function only focuses on the pixels of a single image and cannot effectively
distinguish images with different characteristics. On this basis, we use pairs of images
during training and add the relationship between images in the loss function [21]:

L(x1, x2) = (L(x1) + L(x2)) /2 + aH(x1, x2) (2)

H(x1, x2) =

�
max (0, dm − ||z1 − z2||1) similar(x1, x2)
||z1 − z2||1 different(x1, x2)
(3)

where H is the feature difference between images and its weight is adjusted by the coef-
ficient a. The hyper-parameter dm describes the spread distance margin of the poten-
tial vector so that z1 and z2 are distributed in different regions in the potential space.
This allows the VAE network to make the encoding vectors of images with the same
attributes closer and images with different attributes further during training, which is
more conducive to our judgment of target attributes.

Identification of Screw Types. Collect screw image data on the battery pack in
advance, use a VAE encoder to convert it into a feature vector, cluster the screws with
the same shape attributes, and calculate the average vector. After obtaining the image
information of the target screw to be disassembled, it is input into the VAE encoder to
obtain its feature vector. By comparing the feature vector of the target screw with the
average vector of screws with different shape attributes, the closest one is the geometric
shape attribute of the current target screw. Similarly, the screw status attribute can be
determined. Finally, based on the size of the YOLO positioning bracket and the rela-
tive coordinate relationship between the camera and the screw, the specifications of the
screw can be comprehensively determined to determine the specific model of the screw.
Multiple types of screws in a real disassembly environment are shown in Fig. 5.
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Fig. 5.Multiple types of screws in a real disassembly environment.

3.3 Force Feedback Adjustment of Different Screws

In our previous work, we added action primitives “Fumble”, “Search”, and “Re insert”
to successfully implement force feedback correction if a particular type of screw can-
not be successfully inserted during disassembly. But when using different disassembly
sleeves to disassemble different screws, due to the different shapes and specifications
of the screws, using a single force feedback correction model cannot effectively correct
the deviation of the sleeve connection during the disassembly process. Therefore, we
train different force feedback models based on the shapes and specifications of different
screws, and change them to “Fumble (bolt type)”, “Search (bolt type)” and “Re insert
(bolt type)” based on the original action primitive, select an appropriate force feedback
model based on the judgment of the screw type during disassembly and invoke action
primitives to correct the splicing process.

4 Experimental Verification

4.1 Accuracy and Speed of VAE Judgment

In a simulation environment, we conducted experiments on four different shapes of
screws (outer hexagonal screw, inner hexagonal screw, cross screw, and star screw) with
varying degrees of rust (no rust, mild rust, moderate rust, and severe rust). The trained
VAE screw classification network achieved a success rate of 97.75% in identifying spe-
cific shapes of screws during actual disassembly, At the same time, the accuracy of iden-
tifying the degree of corrosion of screws has reached 100%; At the same time, we use
classical image classification networks to train four classification networks for screw
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Table 3. Success Rate of Classical Image Classification Network Detection

shape(4class) rust(4class) shape&rust(16class)

VGG-16 94.84% 98.48% 89.28%

ResNet 87.87% 100% 73.7%

Mobilevit 84.84% 91.18% 89.79%

Densenet 88.18% 99.74% 82.39%

VAE 97.75% 100% —

shape and rust degree, while training sixteen classification networks for screw shape
and rust degree, with classification accuracy shown in the Table 3. In a real machine
environment, the trained VAE screw classification network achieved a success rate of
100% in identifying specific screw shapes during the actual disassembly process.

Compared to classical image classification networks, VAE networks have higher
classification accuracy and can perform well even in smaller datasets. Previously, we
used YOLO to directly detect and classify screw types, but it was difficult for YOLO to
classify multiple features of screws, and it required recalibration when adding new fea-
ture types, resulting in a large workload. In contrast, using VAE networks can complete
training using smaller datasets and easily collect training data during the disassembly
process without excessive processing.

4.2 Success Rate of Continuous Disassembly of Multiple Screws

In the simulation environment, in the disassembly experiment of six different types of
screws (M8 outer hexagon screw, M10 outer hexagon screw, M12 outer hexagon screw,
inner hexagon screw, cross screw, and star screw), the recognition success rate of spe-
cific screw shape was 97.75%, and the sleeve replacement success rate was 100%. The
overall continuous disassembly success rate was 97.75%. In the actual machine dis-
assembly experiment, in the disassembly experiment of five different types of screws
(M8 outer hexagon screw, M10 outer hexagon screw, M13 outer hexagon screw, M10
outer hexagon cross screw, M13 outer hexagon cross screw), the recognition success
rate of the specific screw shape was 100%, and the sleeve replacement success rate
was 100%. The overall continuous disassembly success rate was 100%. Related exper-
imental videos can be found on the website https://sites.google.com/view/disassembly-
real.

5 Conclusions

In order to solve the problem of screw disassembly for robots in industrial disassembly
tasks, we have designed a multifunctional screw disassembly workstation. Expanding
its functionality on the existing NeuroSymbolic TAMP, workstations can autonomously
plan and execute action primitives based on their perception of the current environment
to complete the disassembly of various screws. A sleeve replacement device has been
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designed to achieve automatic sleeve replacement, which can stably achieve sleeve
replacement during disassembly. When identifying screws, a screw type recognition
method based on attributes has been proposed, which only requires a small amount of
data and has scalability. Through experiments, we have verified that the system can
recognize various screw shapes, specifications, and degrees of rusting in a simulation
environment, achieving a disassembly success rate of 97.75%. Complete the identifi-
cation of multiple real screw shapes and specifications in a real machine environment
and achieve a 100% success rate in disassembly. However, in the real environment, the
number of severely rusted screws is scarce, making it difficult to conduct experiments
on them. Therefore, there is no identification of screw rust attributes and destructive
disassembly experiments conducted in the real environment.

In the future, we will add more types of disassembly sleeves to complete the identi-
fication and disassembly of more types of screws and conduct destructive disassembly
experiments on unmatched sleeves and severely corroded screws. The work of locat-
ing screws and obtaining screw images completed by YOLO can be completed using
Segment-Anything [22], which does not require specialized training to achieve good
segmentation results and fewer recognition errors. Increase mobile platforms to expand
robot workspace and achieve global disassembly.
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