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Abstract— With the rapid development of the new energy
vehicle industry, the efficient disassembly and recycling of
power batteries have become a critical challenge for the cir-
cular economy. In current unstructured disassembly scenarios,
the dynamic nature of the environment severely limits the
robustness of robotic perception, posing a significant barrier to
autonomous disassembly in industrial applications. This paper
proposes a continual learning framework based on Neuro-
Symbolic task and motion planning (TAMP) to enhance the
adaptability of embodied intelligence systems in dynamic en-
vironments. Our approach integrates a multimodal perception
cross-validation mechanism into a bidirectional reasoning flow:
the forward working flow dynamically refines and optimizes ac-
tion strategies, while the backward learning flow autonomously
collects effective data from historical task executions to facilitate
continual system learning, enabling self-optimization. Experi-
mental results show that the proposed framework improves the
task success rate in dynamic disassembly scenarios from 81.9 %
to 100%, while reducing the average number of perception
misjudgments from 3.389 to 1.128. This research provides a
new paradigm for enhancing the robustness and adaptability
of embodied intelligence in complex industrial environments.

I. INTRODUCTION

With the rapid development of Industry 4.0 and the circular
economy, industrial disassembly has become a critical link
in intelligent manufacturing and resource recycling, facing
unprecedented technical challenges [1], [2]. Traditional dis-
assembly operations heavily rely on manual labor, resulting
in low efficiency, high costs, and poor safety. Embodied
intelligence, by endowing robots with perception, decision-
making, and execution capabilities, offers a new techno-
logical pathway toward autonomous disassembly. However,
the complexity of industrial disassembly scenarios imposes
extremely high demands on robots’ multimodal perception,
task planning, and continual learning capabilities.

Task and motion planning (TAMP), as one of the core
technologies of embodied intelligence, achieves closed-loop
adaptability in complex scenarios by integrating symbolic
task planning based on the Planning Domain Definition
Language (PDDL) [3]-[5] with continuous-space motion
optimization through a hierarchical architecture [6]. In re-
cent years, Neuro-Symbolic approaches, which combine the
perceptual learning capabilities of neural networks with the
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logical reasoning power of symbolic systems, have shown
great potential in the TAMP domain [7].

In our previous work, we designed a Neuro-Symbolic
autonomous disassembly system for robots [8]-[10]. This
system dynamically maps multimodal perception to symbolic
states through neural predicates, transforming sensory data
— such as visual image analysis and force feedback — into
discrete symbolic representations. Based on a hierarchical
task planning framework, the system autonomously sched-
ules action primitives. The system successfully achieved
autonomous disassembly of electric vehicle battery screws
and demonstrated good generalization ability in unstructured
environments.

However, the existing system struggles to adapt to dy-
namic changes during operation. First, environmental distur-
bances can induce perception shifts. Layout changes (e.g.,
camera displacement or sudden lighting variations) can cause
a distribution shift in perception features, leading to symbolic
state misjudgments and action sequence conflicts. Second,
long-term operational degradation occurs. In continuous dis-
assembly tasks, tool wear gradually causes end-effector posi-
tioning drift, destabilizing the perception-planning-execution
loop. The current system relies on fixed-parameter models,
making it difficult to dynamically adapt to these time-varying
disturbances, ultimately limiting the system’s robustness
for industrial-grade applications in unstructured disassembly
tasks.

To address these challenges, this study proposes an
adaptive optimization framework that integrates multimodal
cross-validation and continual learning (Figure 1). The sys-
tem tightly couples inference and decision-making with
perception and control, embedding the vision-force cross-
validation mechanism into the PDDL-based forward working
flow and backward learning flow. This framework dynami-
cally refines strategies during task execution and effectively
incorporates historical data into continual learning, construct-
ing a closed-loop control system of perception-planning-
execution-validation-learning.

Our main contributions are as follows:

o We propose a multimodal cross-validation mechanism
that enhances embodied intelligence adaptation in dy-
namic environments through vision-force perception
cross-validation and neural predicate dynamic correc-
tion.

o We design a self-optimizing continual learning frame-
work, introducing a PDDL-based bidirectional reason-
ing flow with forward task execution and backward
learning optimization. The system automatically con-
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Fig. 1: System framework diagram. The system operates under a closed-loop control architecture composed of five modules:
perception, planning, execution, verification, and learning. In the forward working flow, the perception module updates neural
predicates based on environmental inputs, the planning module generates action planning sequences, and the execution module
carries out these sequences. During task execution, the verification module dynamically adjusts task strategies through vision-
force cross-validation. In the backward learning flow, the learning module infers from historical records in the verification
module, automatically collecting valid data through the cross-validation mechanism to expand the continual learning dataset
and optimize the performance of the perception module.

structs training datasets from historical robot tasks, paradigm for the industrial deployment of embodied
reducing dependence on manual annotations and achiev- intelligence.
ing continual model parameter optimization.

o We conduct experiments in a real-world battery dis- II. RELATED WORK

assembly scenario to validate the proposed continual 4 Neuro-Symbolic TAMP
learning framework. The results show that the screw
disassembly success rate increases from 81.9% to 100%
under environmental disturbances, while the average
number of perception misjudgments per task decreases
from 3.389 to 1.128. These results demonstrate the
robustness and practicality of the framework in un-
structured dynamic environments, providing a technical

Artificial intelligence has evolved from symbolic reason-
ing to deep learning-based probabilistic approaches. While
symbolic methods offer strong interpretability, they struggle
with complex and dynamic environments. In contrast, deep
learning excels at perception tasks but relies heavily on large-
scale data and lacks reasoning capabilities. Neuro-Symbolic
Al, which integrates the strengths of both paradigms, has
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emerged as a promising research direction [11], [12].

Neuro-Symbolic TAMP is a representative application of
this paradigm. It uses neural predicates to model environ-
ment states and action primitives to bridge high-level task
descriptions with low-level motion execution, enabling robust
planning in unstructured environments [7], [10], [13].

Despite improvements in flexibility and efficiency, current
Neuro-Symbolic TAMP systems still face challenges, such
as perception errors affecting symbolic decision-making and
limited adaptability to dynamic scenarios. A key issue is
how to effectively integrate multimodal perception and adopt
continual learning to dynamically refine neural-symbolic
mappings, thereby enhancing system robustness.

B. Continual Learning and Autonomous Data Acquisition

Continual learning (CL) enables robots to adapt to evolv-
ing tasks in dynamic environments while retaining previ-
ously acquired knowledge and mitigating catastrophic for-
getting [14], [15]. Current CL strategies encompass a va-
riety of approaches, including gradient-based regulariza-
tion [16], modular decomposition [17], memory-augmented
methods [18], and meta-learning [19]. These techniques
demonstrate different strengths in interference mitigation,
parameter isolation, and fast adaptation. Increasingly, they
are being integrated with deep neural networks to form
diverse and robust CL frameworks.

In terms of data acquisition, weakly-supervised learning
has emerged as a promising solution to reduce reliance on
manual annotations. For example, Barnes et al. proposed
a weakly-supervised segmentation method for autonomous
driving that leverages vehicle trajectories to automatically
generate large-scale labeled datasets for path and obstacle
detection [20]. Inspired by such approaches, our work adopts
a task-driven data acquisition paradigm, where effective
training data is collected based on the robot’s own behav-
ior and perception, facilitating self-supervised optimization
without human labeling.

C. Continual Learning in Neuro-Symbolic TAMP

Recent research has introduced continual learning into
Neuro-Symbolic TAMP frameworks to enhance adaptabil-
ity in open and dynamic environments. For instance, Hy-
GOAL [21] integrates symbolic planning with reinforcement
learning to enable robots to quickly adapt to novel situations
such as environmental disturbances and primitive failures.
However, existing approaches primarily focus on strategy-
level generalization and often lack mechanisms to support
continual learning in the perceptual components.

To address these limitations, our proposed Neuro-
Symbolic TAMP system incorporates a multimodal cross-
validation mechanism based on visual and force feedback.
This allows the system to continuously refine both its sym-
bolic state representations and perceptual models without
requiring external annotations. By bridging the gap between
neural perception and symbolic reasoning, our approach
improves planning robustness and environmental adaptability
in complex robotic tasks.

TABLE I: Detailed Description of (Neural) Predicates

Predicate Function Description

The robot has obtained the coarse position of
the screw.

1 indicates visual perception, 0 indicates force
perception.

The end-effector is close to the screw.

The end-effector is near the top of the screw.
The screw has been disassembled.

Visual perception determines that the socket
is aligned with the screw, meeting the engage-
ment requirement.

Force perception confirms the socket success-
fully engages with the screw, meeting the
disassembly requirement.

have_coarse_pose
pattern
near_-screw
above_screw

disassembled
target_aim

socketed

TABLE II: Detailed Description of Action Primitives

Primitive Function Description

Move Moves the robotic arm to position the end-effector
near the top of the target screw.

Moves the arm above the screw, estimates the pre-
cise pose via visual perception, and repositions the
end-effector to align its center axis with the screw.
Estimates the precise screw pose through force feed-
back and moves the arm to align the end-effector’s
axis with the screw.

Mate_vision

Mate_force

Insert Lowers the end-effector along its axis while rotating
to engage the socket with the screw.
Disassemble Rotates the end-effector counterclockwise to un-

screw and disassemble the target screw.

ITI. PROBLEM DEFINITION

We formulate the system-level task as a planning problem
defined by a tuple (Sp, Sg, A), where Sy denotes the initial
state, S the goal state, and A = {aq,a2,...,a,} the set
of action primitives, with a; (i = 1,...,n) representing
individual action primitives. The objective of the planning
algorithm is to find an executable sequence of action primi-
tives prim_list = {ap,, ap,,--.,ap,, } such that applying
these actions in order transitions the system from Sy to Sg.

In this work, we consider the disassembly of electric
vehicle (EV) battery screws as a representative application
scenario. While this task is trivial for humans, autonomous
execution in unstructured environments remains highly chal-
lenging for robotic systems. To enable effective planning and
execution, multimodal sensory inputs—comprising visual
and force data—are processed by neural networks to infer
quasi-symbolic state representations in the form of neural
predicates (Table I).

Inspired by human disassembly behavior, we design five
core action primitives (Table II). Each primitive is defined
in a PDDL-like formalism using preconditions and expected
effects grounded in the neural predicate space (Table III), en-
abling integration with symbolic task planning frameworks.

1563

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 13,2025 at 09:02:07 UTC from IEEE Xplore. Restrictions apply.



Move

Task Planning Initial state(S,)

Mate_vision Insert

Vision module be corrected

Goal state( SE!: dissembled Sc = Se Sc = Se Sc=Se
Set of action primitives(A)
Prim_list: i flip
move +  insert judgment
mate_vision *  disassemble
Sc# Se Dissemble
Di /! I
jssemble nsert Mate_force Task Planning  updated S,
Force module ground truth
Sc = Se Sc=Se Sc = Se Goal state(S;): dissembled
Set of action primitives(A)
updated Prim_list: i
mate_vision disassemble
insert
Forward Working Flow = Perception 4 Task Planning =+ Execution  + Validation S: current state

Backward Learning Flow =  Perception  +

Validation

S.: expected state

+ Learning

Fig. 2: Illustration of the bidirectional reasoning flow, consisting of a forward working flow and a backward learning
flow. In the forward working flow, the system generates an action primitive sequence based on the initial and goal states, and
sequentially executes operations such as Move, Mate_vision, and Insert. When the Insert action fails to achieve
the expected socketed state, the system triggers replanning, switches to force perception to re-estimate the screw pose,
and successfully completes the remaining task. After task completion, the backward learning flow retrospectively analyzes
the execution process. The successful screw pose estimated by force perception is treated as ground truth to correct the
biased visual perception result. Meanwhile, the system identifies and flips the neural predicate with the lowest confidence
among the preconditions of the Insert action, and then terminates the traceback.

TABLE III: PDDL Representation of Action Primitives:
Preconditions and Expected Effects

Primitive Preconditions and Expected Effects

Move :pre have_coarse_pose A - near.screw
ieff near_screw A above_screw
Mate_vision :pre —pattern Anear_screw A ~target_aim
eff pattern A above_screw A target_aim
Mate_force :pre pattern Anear_screw A —above_screw

A ~target_aim
ieff - pattern A above_screw A target_aim
Insert :pre target_aim A above_screw
ieff socketed A - above_screw
Disassemble :pre socketed A - disassembled
ieff disassembled

IV. METHOD
A. Methodology Overview

We propose a continual learning framework built upon
a Neuro-Symbolic TAMP architecture. The framework inte-
grates a multimodal perception cross-validation mechanism
and establishes a bidirectional reasoning flow, composed
of a forward working flow and a backward learning flow.
It is designed to enable robots to robustly execute tasks
in dynamic environments while continuously accumulating
knowledge from execution feedback and optimizing internal

models, thereby enhancing the system’s autonomous learning
and adaptive capabilities.

B. Multimodal Perception Cross-validation Mechanism

During robotic task execution, a single perception modal-
ity is often vulnerable to environmental noise, leading to
unstable perception results and consequently affecting the
accuracy and robustness of task performance. To enhance the
system’s adaptability in dynamic environments, we introduce
a multimodal perception cross-validation mechanism, which
dynamically corrects perception errors and optimizes ac-
tion strategies through complementary information between
modalities.

For clarity, the two perception modalities involved in this
mechanism are denoted as modality A and modality B. The
system first relies on modality A to estimate the precise
pose of the target object (e.g., a screw) and executes the
corresponding sequence of planned action primitives. After
a critical action (such as Insert) is performed, the system
invokes modality B to sense and update the current system
state, determining whether it aligns with the expected reason-
ing outcome. If the state is consistent, the system proceeds
to subsequent actions (e.g., Disassemble); otherwise, it
triggers replanning. Modality B is then used to re-estimate
the target pose, and the updated action sequence is executed,
enabling a closed-loop correction between perception and
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planning.

In this work, we select vision and force as two representa-
tive perception modalities. The visual modality uses RGB-D
images as input, while the force modality captures variations
in force signals during exploratory contact. The system fuses
these multimodal observations to update neural predicates
and generate accurate pose predictions for the screw.

C. Forward Working Flow

The forward working flow models the system’s task ex-
ecution logic and serves as the core process for planning
and verification. In this flow, multimodal perception data
are mapped into interpretable symbolic states through neural
predicates. The system formalizes both the current and goal
states using PDDL, where each action primitive is defined
by its preconditions and expected effects.

Given the initial state Sj, the goal state S, and a set
of action primitives A, the PDDL planner generates an
executable sequence of primitives, denoted as prim_list.
The robot attempts to execute this sequence in order. Before
executing each primitive, the system verifies whether the
current symbolic state satisfies its preconditions using real-
time multimodal sensing. If the condition holds, the primitive
is executed; otherwise, the current state is updated as a
new start state S, and the planner replans a new sequence
prim-list’ based on (5§, Sq, A).

Throughout the execution, the multimodal perception
cross-validation mechanism continuously monitors the state
to ensure consistency with the expected symbolic transitions.
This enables dynamic correction of the action plan and robust
adaptation to environmental changes or sensing inaccuracies.

D. Backward Learning Flow

The backward learning flow enables continual self-
improvement by tracing execution failures and correcting
perception and symbolic reasoning errors. Unlike the forward
working flow, which focuses on task planning and execu-
tion, the backward learning flow focuses on learning from
mistakes and optimizing model parameters.

After each task execution, the system retrospectively
analyzes the forward working flow. Two main correction
mechanisms are applied: perception estimation correction
and neural predicate correction.

1) Perception Estimation Correction: When a task is
successfully completed, the final perception result (e.g.,
screw pose) is treated as ground truth, which is assumed
to be obtained from the more reliable perception modality
A. If, during execution, the system previously used another
modality B to produce a biased estimation, the ground truth
can be used to supervise and update the model of modality
B.

Let the true pose from modality A be:

Piue = [2,Y, 2, 0] (1)
The estimated pose from modality B is given by:

ps = fB(IB;0B) (2)

where fp is the model for modality B, with input /g and
parameters 5. We minimize:

1
LB = §||ptrue - pBH% (3)
and update:
0Lt = 0% — Ve, Lp. 4)

2) Neural Predicate Correction: When an action fails to
achieve its expected effects, the system backtracks through
its preconditions to identify and correct unreliable neural
predicates. Assuming that non-neural predicates are reliable,
let the set of m neural predicates involved in the precon-
ditions be denoted as {Py, Pa, ..., P }. Each predicate P;
is predicted by a neural network classifier g;(x; ¢;), where
x represents the input perceptual data and ¢; denotes the
classifier parameters. The classifier outputs a probability
distribution:

gi(z; i) = [p}, pi] )

where p{ and p} represent the probabilities that predicate P;
is false (0) and true (1), respectively. The confidence score
is defined as:

¢; = max(p{, p;) (6)
The system identifies the neural predicate P}, with the lowest
confidence score based on the outputs of the neural network

classifiers:

k=arg min c;. @)
i=1,....m

The prediction for Py is then flipped to produce corrected
label ¢, and parameters ¢;, of its classifier g, are updated
by minimizing cross-entropy:

Ok =1—yk, = argmax(p},ph). (8)
Li = —[gr log(p) + (1 — i) log(p})] 9)
= ¢}, — Vg, Ly. (10)

The process stops after a single correction to avoid intro-
ducing unreliable supervision signals into the training set.

E. Illustrative Case

Figure 2 illustrates the application of the proposed bidi-
rectional reasoning flow in an electric vehicle battery screw
removal task, comprising both the forward working flow and
the backward learning flow.

In this task, the forward working flow begins with the ini-
tial state Sp = —patternAhave_coarse_pose (pose)
A —near_screw, the goal state S¢ =disassembled,
and a set of action primitives A = {Move ,Mate_vision,
Mate_force,Insert,Disassemble}. Based on these
inputs, the PDDL planner generates an initial sequence of
action primitives prim_list = {MoveMate_vision,
Insert,Disassemble}. The robot executes this sequence
in order. During Mate_vision, the system estimates the
screw pose using visual perception. Before executing the
Insert action, the system evaluates its two neural predicate
preconditions, target_aim and above_screw, as true,
and proceeds with execution.
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However, the Insert action fails, as the force per-
ception module indicates that the screw is not success-
fully socketed, i.e., the expected socketed predicate
is not achieved. The forward working flow then triggers
an abnormal state handler, halting the current execution.
Based on the updated state S; =patternAnear_screw
A—above_screw/A—target_aim, the planner generates
a new action sequence prim_list’ = {Mate_force,
Insert,Disassemble}. The robot executes the new
sequence in order. During Mate_force, the system re-
estimates the screw pose using force perception, eventually
completing the task successfully.

After the forward working flow concludes, the backward
learning flow retrospectively analyzes the execution. Since
the task is successfully completed based on force perception,
the resulting screw pose is regarded as ground truth. The
system detects that a biased visual estimation was used
earlier in the execution. Hence, the system corrects the visual
estimation using the ground truth and stores the corrected
result along with its corresponding input sample in the
continual learning dataset.

Furthermore, because the initial execution of Insert
failed, the system infers that some of its preconditions may
have been misjudged. Upon review, it identifies that among
the neural predicate preconditions, target_aim has the
lowest confidence score. Thus, this predicate is assumed
to be incorrectly classified, and its label is flipped. The
corrected label and its corresponding input are then stored
in the continual learning dataset.

Once a sufficient volume of such corrected samples ac-
cumulates in the dataset, the system performs supervised
updates of the corresponding model parameters. This process
improves the accuracy of perception and the adaptability of
the system in dynamic environments.

V. EXPERIMENTS AND RESULTS
A. Experimental System Architecture

Figure 3 shows the experimental system architecture,
including the following core components:

« Retired onboard battery pack as the disassembly target.
o URI10e six-degree-of-freedom collaborative robotic arm.
o End-effector integration module:

— Custom screw removal tool.

— Intel RealSense depth camera for visual sensing.
« ROS-based hybrid symbolic-reactive control system.

B. Experimental Setup

To evaluate the robustness and adaptability of the proposed
Neuro-Symbolic TAMP continual learning framework in
dynamic and uncertain environments, we design a series of
battery screw disassembly tasks that integrate multimodal
perception and symbolic planning. Each task aims to suc-
cessfully remove a single screw. The system deploys both
visual perception networks and force perception networks to
perform cross-validation and complementary correction.

The perception module updates the predicates defined in
Table I based on either visual or force feedback, which in

-
N,

Fig. 3: Experimental System Architecture

turn guides the PDDL-based symbolic planner in selecting
action primitives (see Table II). The experimental scenario
is designed to reflect realistic operational conditions, partic-
ularly lighting variation, which greatly affects the accuracy
of visual predictions while having limited impact on force
perception.

a) Replanning Strategy:: During task execution, if an
action (e.g., Insert) fails to achieve its expected effect
(e.g., the target state socketed is not satisfied), the system
triggers a replanning mechanism. It regenerates an updated
sequence of action primitives based on the new state in an
attempt to recover task execution.

To prevent excessive recovery attempts due to perception
errors, we define a replanning threshold ny, = 10. When
the number of replans n exceeds this threshold, the task is
marked as failed, and the system proceeds directly to the
next task without further replanning.

b) Perception Mismatch and Backward Correction::
For tasks that are eventually successful but require at least
one replan (0 < n < nyy), the system initiates a backward
learning flow to retrospectively correct perception errors:

1) Cross-modal Correction: The final successful pose
estimation (typically based on force perception) is re-
garded as ground truth. This ground truth is used to
correct earlier pose predictions from another modality
(e.g., vision). The corrected label, along with its corre-
sponding input data, is stored in the continual learning
buffer.

2) Neural Predicate Correction: The system backtracks
through the action sequence and identifies the first failed
action. Among its neural preconditions, the one with
the lowest confidence is considered erroneous and its
output is flipped to form a corrected training label. This
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TABLE IV: Task Success Rate and Average Replans

Tterations Task Count SUS n
0 131 81.68% 3.389
1 162 89.51% 2.648
2 62 100.00% 1.984
3 39 100.00% 1.128

corrected sample is also stored in the continual learning
buffer.

c) Continual Learning Trigger:: When the number of
newly collected samples in the buffer of any perception
module reaches a predefined threshold (e.g., 75), the system
triggers an incremental model update. The update process is
autonomous and does not interrupt task execution, enabling
continual improvement of the perception accuracy.

C. Evaluation Metrics

We define the number of replans n as a key metric to
assess the accuracy of the perception-to-symbol mapping. A
replan indicates that the system’s perception is insufficient
to support the successful completion of the current task. If
n exceeds the threshold n,j, the task is considered a failure.
The binary success indicator function for each task is defined

as:
(Task Success)

(Task Failure)

1, n<ngy

I(n) = {0

a) Quantitative Evaluation Metrics:: To quantitatively
evaluate the performance improvement brought by the con-
tinual learning mechanism, we record the replanning count
n and calculate the following two metrics after each round
of model update:

(1)

n > g

o Task Success Rate:

N
1
SUS = > T(m) (12)
k=1
which reflects the proportion of tasks that are success-
fully completed within the replanning threshold.
o Average Number of Replans:

13)

which measures the system’s average reliance on re-
planning and indicates the stability of perception.

D. Results and Discussion

Table IV presents the task success rate SUS and average
number of replans n over four system iterations. The number
of iterations reflects the number of continual learning updates
applied to the neural perception modules.

The results demonstrate that the continual learning mecha-
nism enables the system to refine neural-symbolic mappings
by leveraging real task outcomes. With each update, the
system becomes more reliable: SUS rises to 100% after
two updates, and n reduces by over 60%. This illustrates

improved perception confidence and fewer symbolic mis-
matches.

In particular, the number of perception-induced replans
drops significantly due to better prediction from corrected
neural predicates. The system learns to recover from early-
stage misjudgments (e.g., misestimated target_aim) and
reduces dependence on replanning. Moreover, experiments
show that integrating multi-modal corrections improves ro-
bustness to environmental disturbances such as lighting vari-
ations.

These findings confirm that our proposed bidirectional
reasoning flow, which combines symbolic error recovery
and continual perception refinement, significantly enhances
task success and reduces planning instability in unstructured
robotic manipulation.

VI. CONCLUSIONS

In this paper, a neural-symbolic TAMP framework inte-
grating multimodal perceptual cross-validation and continual
learning is proposed to address the dynamic adaptation chal-
lenges of autonomous screw disassembly of power batteries
in unstructured scenarios. By constructing a forward working
flow and a backward learning flow based on PDDL, the
system achieves dynamic correction of perceptual bias and
online optimization of symbolic knowledge, which solves the
problem of perceptual-symbolic mapping error and perfor-
mance degradation under environmental perturbation in the
traditional method. Experimental validation shows that the
proposed framework significantly improves task success rates
in dynamic disassembly scenarios (increasing from 81.9% to
100%) and reduces the number of perception misjudgments
(decreasing from 3.389 to 1.128).

However, to ensure the smooth interaction between the
forward working flow and the backward learning flow, the
current system still relies on carefully designed predicates
and action primitives, which can pose a considerable engi-
neering burden in complex tasks. Moreover, the backward
learning flow assumes that action execution is error-free and
that state transitions are fully traceable—assumptions that
often do not hold in real-world unstructured environments.
Furthermore, during the perception correction process, the
system selects the neural predicate with the lowest confi-
dence as the most likely misjudgment for label correction.
However, low confidence does not necessarily indicate an
incorrect prediction, which may lead to incorrect supervision
and degrade the quality of model updates. In addition, when
all perception modalities are simultaneously affected by
noise or interference, the system may be unable to obtain
reliable ground-truth estimations from any single modality,
making it difficult to correct the others. These limitations
reduce the effectiveness of continual learning and compro-
mise the system’s robustness and adaptability in complex
environments.

In future work, we plan to incorporate action success
rates and state transition probabilities into the framework
to enable more robust probabilistic reasoning. We also aim
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to explore the integration of continual learning with adap-
tive action primitive generation based on large language
models (LLMs). By leveraging LLMs’ knowledge and gen-
eralization abilities, the system can dynamically generate
and refine action primitives during execution, adapting to
novel environments. LLMs can further assist in defining new
symbolic operations and optimizing primitive parameters
through multimodal feedback, enabling more autonomous
skill acquisition and improving the system’s generalization
and decision-making capabilities in complex scenarios.
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